. | . |
Towards quantum simulation of false vacuum decay by Staff Writers Cambridge UK (SPX) Jan 21, 2022
Phase transitions are everywhere, ranging from water boiling to snowflakes melting, and from magnetic transitions in solids to cosmological phase transitions in the early universe. Particularly intriguing are quantum phase transitions that occur at temperatures close to absolute zero and are driven by quantum rather than thermal fluctuations. Researchers in the University of Cambridge studied properties of quantum phases and their transitions using ultracold atoms in an optical lattice potential (formed by a set of standing wave lasers). Typically, the transition from a Mott insulator (MI) to a superfluid (SF), which is governed by the interplay of the atom-atom interactions and the hopping of atoms, is a continuous transition, where the system undergoes a smooth continuous change crossing the phase transition point. However, many phase transitions are discontinuous, such as water freezing to ice, or the transition thought to have triggered the inflation period in the early universe. These are called 'first-order transitions' and for instance allow both phases to coexist - just like ice blocks in a glass of water - and can lead to hysteresis and metastability, where a system remains stuck in its original phase (the false vacuum) even though the ground state has changed. By resonantly shaking the position of the lattice potential, the researchers could couple or "mix" the first two bands of the lattice. For the right parameters, this can excite the atoms from the lowest band into the first excited band, where they would form a new superfluid in which the atoms appear at the edge of the band (see figure). Crucially, the transition from the original Mott insulator in the lowest band to the resulting staggered superfluid in the excited band can be first-order (discontinuous), because the non-staggered order in the Mott insulator is incompatible with the staggered order of this superfluid - so the system has to choose one. The researchers could directly observe the metastability and hysteresis associated with this first-order transition by monitoring how fast one phase changes into another, or not. The findings are published in the journal Nature Physics. "We realised a very flexible platform where phase transitions could be tuned from continuous to discontinuous by changing the shaking strength. This demonstration opens up new opportunities for exploring the role of quantum fluctuations in first-order phase transitions, for instance, the false vacuum decay in the early universe," said first author Dr Bo Song from Cambridge's Cavendish Laboratory. "It is really fascinating that we are on the road to cracking the mystery of the hot and dense early universe using such a cold and tiny atomic ensemble." "We are excited to enhance the scope of quantum simulators from condensed matter settings towards potential simulations of the early universe. While there clearly is a long way still to go, this work is an important first step," added Professor Ulrich Schneider, who led the research at the Cavendish Laboratory. "This work also provides a testbed for exploring the spontaneous formation of spatial structures when a strongly interacting quantum system undergoes a discontinuous transition." "The underlying physics involves ideas that have a long history at the Cavendish, from Nevill Mott (on correlations) to Pyotr Kapitsa (on superfluidity), and even using shaking to effect dynamical control in a manner explained by Kapitsa but put to use in a way he would never have envisaged," explained Professor Nigel Cooper, also from the Cavendish. The research is funded in part by the European Research Council (ERC), and the UK Engineering and Physical Sciences Research Council (EPSRC) as well as the Simons Foundation.
Research Report: "Realizing discontinuous quantum phase transitions in a strongly correlated driven optical lattice"
Controlling how "odd couple" surfaces and liquids interact Boston MA (SPX) Jan 20, 2022 The wettability of a surface - whether drops of water or another liquid bead up or spread out when they come into contact with it - is a crucial factor in a wide variety of commercial and industrial applications, such as how efficiently boilers and condensers work in power plants or how heat pipes funnel heat away in industrial processes. This characteristic has long been seen as a fixed property of a given pair of liquid and solid materials, but now MIT researchers have developed a way of making even t ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |