|
. | . |
|
by Staff Writers Berlin, Germany (SPX) Jun 28, 2015
Pure carbon occurs in many forms. Besides the classical configurations found in diamonds, graphite, and coal, there are other younger exotic cousins such as graphene. Its structure resembles a honeycomb - a hexagonal mesh with a carbon atom at every corner - that is only a single atomic layer thick. Hence, it is essentially two-dimensional. As a result, graphene is extremely conductive, completely transparent, and quite resilient both chemically and mechanically. It has long been known that graphene is also fundamentally suited to detecting traces of organic molecules. This is because the electrical conductivity of graphene drops as soon as foreign molecules bind to it. The problem, though, is that this happens with almost every molecule. Graphene is not very selective, which makes it very difficult to differentiate molecules. Therefore, it cannot be used as a sensor.
Now, mounting brackets for detector molecules attached These organic molecules behave like mounting brackets to which the selective detector molecules can be attached in the next step. "Thanks to these molecules, the graphene can now be employed for detecting various substances similar to how a key fits a lock", explains Dr. Marc Gluba. The "lock" molecules on the surface are highly selective and only absorb the matching "key" molecules.
Large graphene surfaces at HZB Then, they transferred the graphene layer to a quartz crystal microbalance. Any increase in mass alters the oscillatory frequency of the quartz crystal that even small amounts right down to individual molecular layers can be measured.
Precise detection and control "In addition, we can precisely control how many molecules bind to the graphene by adjusting an applied voltage", explains Dr. Jorg Rappich from the HZB Institute for Silicon Photovoltaics, Rosicke's advisor. "The hopes we have for graphene are really enormous", says Prof. Norbert Nickel, head of the research team. For example, one thing you could imagine would be a really inexpensive "lab-on-a-chip" - you would apply a single drop of blood and immediately obtain data for important medical diagnostics. Felix Rosicke is completing his doctoral dissertation in the School of Analytical Sciences Adlerhof (SALSA) at Humboldt-Universitat zu Berlin and at HZB; Quantifying the electrochemical maleimidation of large area graphene - F. Rosicke, M.A. Glubaa, K. Hinrichs, Guoguang Sun, N.H. Nickel, J. Rappich - doi:10.1016/j.elecom.2015.05.010
Related Links Helmholtz-Zentrum Berlin fur Materialien und Energie Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |