24/7 Space News
CHIP TECH
Toward a code-breaking quantum computer
stock image only
Toward a code-breaking quantum computer
by Adam Zewe | MIT News
Boston MA (SPX) Aug 23, 2024

The most recent email you sent was likely encrypted using a tried-and-true method that relies on the idea that even the fastest computer would be unable to efficiently break a gigantic number into factors.

Quantum computers, on the other hand, promise to rapidly crack complex cryptographic systems that a classical computer might never be able to unravel. This promise is based on a quantum factoring algorithm proposed in 1994 by Peter Shor, who is now a professor at MIT.

But while researchers have taken great strides in the last 30 years, scientists have yet to build a quantum computer powerful enough to run Shor's algorithm.

As some researchers work to build larger quantum computers, others have been trying to improve Shor's algorithm so it could run on a smaller quantum circuit. About a year ago, New York University computer scientist Oded Regev proposed a major theoretical improvement. His algorithm could run faster, but the circuit would require more memory.

Building off those results, MIT researchers have proposed a best-of-both-worlds approach that combines the speed of Regev's algorithm with the memory-efficiency of Shor's. This new algorithm is as fast as Regev's, requires fewer quantum building blocks known as qubits, and has a higher tolerance to quantum noise, which could make it more feasible to implement in practice.

In the long run, this new algorithm could inform the development of novel encryption methods that can withstand the code-breaking power of quantum computers.

"If large-scale quantum computers ever get built, then factoring is toast and we have to find something else to use for cryptography. But how real is this threat? Can we make quantum factoring practical? Our work could potentially bring us one step closer to a practical implementation," says Vinod Vaikuntanathan, the Ford Foundation Professor of Engineering, a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL), and senior author of a paper describing the algorithm.

The paper's lead author is Seyoon Ragavan, a graduate student in the MIT Department of Electrical Engineering and Computer Science. The research will be presented at the 2024 International Cryptology Conference.

Cracking cryptography
To securely transmit messages over the internet, service providers like email clients and messaging apps typically rely on RSA, an encryption scheme invented by MIT researchers Ron Rivest, Adi Shamir, and Leonard Adleman in the 1970s (hence the name "RSA"). The system is based on the idea that factoring a 2,048-bit integer (a number with 617 digits) is too hard for a computer to do in a reasonable amount of time.

That idea was flipped on its head in 1994 when Shor, then working at Bell Labs, introduced an algorithm which proved that a quantum computer could factor quickly enough to break RSA cryptography.

"That was a turning point. But in 1994, nobody knew how to build a large enough quantum computer. And we're still pretty far from there. Some people wonder if they will ever be built," says Vaikuntanathan.

It is estimated that a quantum computer would need about 20 million qubits to run Shor's algorithm. Right now, the largest quantum computers have around 1,100 qubits.

A quantum computer performs computations using quantum circuits, just like a classical computer uses classical circuits. Each quantum circuit is composed of a series of operations known as quantum gates. These quantum gates utilize qubits, which are the smallest building blocks of a quantum computer, to perform calculations.

But quantum gates introduce noise, so having fewer gates would improve a machine's performance. Researchers have been striving to enhance Shor's algorithm so it could be run on a smaller circuit with fewer quantum gates.

That is precisely what Regev did with the circuit he proposed a year ago.

"That was big news because it was the first real improvement to Shor's circuit from 1994," Vaikuntanathan says.

The quantum circuit Shor proposed has a size proportional to the square of the number being factored. That means if one were to factor a 2,048-bit integer, the circuit would need millions of gates.

Regev's circuit requires significantly fewer quantum gates, but it needs many more qubits to provide enough memory. This presents a new problem.

"In a sense, some types of qubits are like apples or oranges. If you keep them around, they decay over time. You want to minimize the number of qubits you need to keep around," explains Vaikuntanathan.

He heard Regev speak about his results at a workshop last August. At the end of his talk, Regev posed a question: Could someone improve his circuit so it needs fewer qubits? Vaikuntanathan and Ragavan took up that question.

Quantum ping-pong
To factor a very large number, a quantum circuit would need to run many times, performing operations that involve computing powers, like 2 to the power of 100.

But computing such large powers is costly and difficult to perform on a quantum computer, since quantum computers can only perform reversible operations. Squaring a number is not a reversible operation, so each time a number is squared, more quantum memory must be added to compute the next square.

The MIT researchers found a clever way to compute exponents using a series of Fibonacci numbers that requires simple multiplication, which is reversible, rather than squaring. Their method needs just two quantum memory units to compute any exponent.

"It is kind of like a ping-pong game, where we start with a number and then bounce back and forth, multiplying between two quantum memory registers," Vaikuntanathan adds.

They also tackled the challenge of error correction. The circuits proposed by Shor and Regev require every quantum operation to be correct for their algorithm to work, Vaikuntanathan says. But error-free quantum gates would be infeasible on a real machine.

They overcame this problem using a technique to filter out corrupt results and only process the right ones.

The end-result is a circuit that is significantly more memory-efficient. Plus, their error correction technique would make the algorithm more practical to deploy.

"The authors resolve the two most important bottlenecks in the earlier quantum factoring algorithm. Although still not immediately practical, their work brings quantum factoring algorithms closer to reality," adds Regev.

In the future, the researchers hope to make their algorithm even more efficient and, someday, use it to test factoring on a real quantum circuit.

"The elephant-in-the-room question after this work is: Does it actually bring us closer to breaking RSA cryptography? That is not clear just yet; these improvements currently only kick in when the integers are much larger than 2,048 bits. Can we push this algorithm and make it more feasible than Shor's even for 2,048-bit integers?" says Ragavan.

This work is funded by an Akamai Presidential Fellowship, the U.S. Defense Advanced Research Projects Agency, the National Science Foundation, the MIT-IBM Watson AI Lab, a Thornton Family Faculty Research Innovation Fellowship, and a Simons Investigator Award.

Research Report:"Space-Efficient and Noise-Robust Quantum Factoring"

Related Links
Computer Science and Artificial Intelligence Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Advances in Atomic-Level Photoswitching for Nanoscale Optoelectronics
Berlin, Germany (SPX) Aug 16, 2024
Nanoscale optoelectronics, a rapidly growing field focused on the development of ultra-small electronic and photonic devices, holds the promise of making technology faster, more compact, and energy-efficient. Central to this progress is the ability to control photoreactions at the atomic level, a key factor in optimizing and miniaturizing these devices. Localized surface plasmons (LSPs)-light waves generated on nanoscale material surfaces-are instrumental in this endeavor, offering the capability ... read more

CHIP TECH
SpaceX will bring stranded Boeing Starliner crew home in February

SpaceX a week away from first private spacewalk

NASA Awards $1.25 Million to Teams Innovating Space Food Production

Neuraspace Enhances Space Traffic Management Through EISCAT Partnership

CHIP TECH
SpaceX Polaris Dawn launch pushed back after helium leak

SpaceX shows off Dragon capsule for Polaris Dawn flight

SpaceX sends 22 Starlink satellites into orbit using new first stage booster

Polaris Dawn Mission Set for August 26 to Advance Commercial Space Exploration

CHIP TECH
The means for mapping Martian meteorites

Western researchers help identify origins of Martian meteorites

Rocket Lab Prepares Twin Satellites for NASA Mars Mission Launch

An oasis in the desert on Mars

CHIP TECH
Shenzhou-18 Crew Tests Fire Alarms and Conducts Medical Procedures in Space

Astronauts on Tiangong Space Station Complete Fire Safety Drill

Shenzhou XVIII Crew Conducts Emergency Drill on Tiangong Space Station

Beijing Unveils 'Rocket Street' to Boost Commercial Space Sector

CHIP TECH
Sateliot Advances Towards Commercialization Following Launch of Four New Satellites

Apex Unveils GEO Aries Satellite Bus for Geostationary Missions

Lockheed Martin Set to Acquire Terran Orbital for $450 Million

NASA Hosts Symposium on the Macroeconomic Impacts of Space Investments

CHIP TECH
How students learn to fly NASA's IXPE spacecraft

Astroscale Japan to lead Phase II of JAXA's Space Debris Removal Initiative

Adaptive 3D Printing System Enhances Precision in Organism Handling

Compact Spherical Air Bearings Streamline Satellite Attitude Control Testing

CHIP TECH
Citizen scientists confirm new warm Jovian-class exoplanet

The evolution of the Trappist-1 planetary system

A Baby Planet Reveals Its Hiding Place

UK Space Agency Backs Missions to Study Stellar Influence on Habitable Worlds

CHIP TECH
Juice trajectory reset with historic Lunar-Earth flyby

NASA's Juno Mission Maps Jupiter's Radiation Using Danish Technology

Juice captures striking image of Moon during flyby

Ariel's Carbon Dioxide Indicates Potential Subsurface Ocean on Uranus' Moon

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.