. | . |
Too many disk galaxies than theory allows by Staff Writers Bonn, Germany (SPX) Feb 07, 2022
The Standard Model of Cosmology describes how the universe came into being according to the view of most physicists. Researchers at the University of Bonn have now studied the evolution of galaxies within this model, finding considerable discrepancies with actual observations. The University of St. Andrews in Scotland and Charles University in the Czech Republic were also involved in the study. The results have now been published in the Astrophysical Journal. Most galaxies visible from Earth resemble a flat disk with a thickened center. They are therefore similar to the sports equipment of a discus thrower. According to the Standard Model of Cosmology, however, such disks should form rather rarely. This is because in the model, every galaxy is surrounded by a halo of dark matter. This halo is invisible, but exerts a strong gravitational pull on nearby galaxies due to its mass. "That's why we keep seeing galaxies merging with each other in the model universe," explains Prof. Dr. Pavel Kroupa of the Helmholtz Institute for Radiation and Nuclear Physics at the University of Bonn. This crash has two effects, the physicist explains: "First, the galaxies penetrate in the process, destroying the disk shape. Second, it reduces the angular momentum of the new galaxy created by the merger." Put simply, this greatly decreases its rotational speed. The rotating motion normally ensures that the centrifugal forces acting during this process cause a new disk to form. However, if the angular momentum is too small, a new disk will not form at all.
Large discrepancy between prediction and reality "Here we encountered a significant discrepancy between prediction and reality," Haslbauer says: "There are apparently significantly more flat disk galaxies than can be explained by theory." However, the resolution of the simulations is limited even on today's supercomputers. It may therefore be that the number of disk galaxies that would form in the Standard Model of Cosmology has been underestimated. "However, even if we take this effect into account, there remains a serious difference between theory and observation that cannot be remedied", Haslbauer points out. The situation is different for an alternative to the Standard Model, which dispenses with dark matter. According to the so-called MOND theory (the acronym stands for "MilgrOmiaN Dynamics), galaxies do not grow by merging with each other. Instead, they are formed from rotating gas clouds that become more and more condensed. In a MOND universe, galaxies also grow by absorbing gas from their surroundings. "However, mergers of full-grown galaxies are rare in MOND. "Our research group in Bonn and Prague has uniquely developed the methods to do calculations in this alternative theory," says Kroupa, who is also a member of the Transdisciplinary Research Units "Modelling" and "Matter" at the University of Bonn. "MOND's predictions are consistent with what we actually see."
Challenge for the Standard Model "Nevertheless, the MOND theory solves all known extragalactic cosmological problems despite being originally formulated to address galaxies only," says Dr. Indranil Banik, who was involved in this research. "Our study proves that young physicists today still have the opportunity to make significant contributions to fundamental physics," Kroupa adds.
Research Report: The high fraction of thin disk galaxies continues to challenge CDM cosmology
Shadow of cosmic water cloud reveals the temperature of the young Universe Cologne, Germany (SPX) Feb 07, 2022 Astronomers have found a new and original method for measuring the cosmic microwave background's temperature when the Universe was still in its infancy. Writing in 'Nature', they confirm in their new study the early cooling of our Universe shortly after the Big Bang and open up new perspectives on the elusive dark energy. An international group of astrophysicists has discovered a new method to estimate the cosmic microwave background temperature of the young Universe only 880 million years after t ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |