. 24/7 Space News .
TIME AND SPACE
This supernova in a lab mimics the cosmic blast's splendid aftermath
by Staff Writers
Atlanta, GA (SPX) Jun 18, 2020

The lab machine that generates the miniature supernova remnants stands about six feet tall. At the bottom, a small detonation of an explosive sends the blast wave upward. It passes through the window in the center, where it jams layers of gas together to create turbulence. A high-speed camera captures the creation of the formations.

Nestled in the constellation Taurus, a spectacle of swirling cosmic gases measuring half a dozen lightyears across glows in shades of emerald and auburn. The Crab Nebula was born of a supernova, the explosion of a giant star, and now, a lab machine the size of a double door replicates how the immense blasts paint the astronomical swirls into existence.

"It's six feet tall and looks like a big slice of pizza that's about four feet wide at the top," said Ben Musci of the supernova machine he built for a study at the Georgia Institute of Technology.

The machine is also about as thin as a door and stands vertically with the point of the "slice of pizza" at the bottom. A concise detonation in that tip thrusts a blast wave toward the top, and in the middle of the machine, the wave passes through two layers of gas, making them mix turbulently into swirls like those left by supernovas.

Laser light illuminates the swirls, and through a window, a high-speed camera with a close-up lens captures the beauty along with data on a centimeter scale that can be extrapolated to astronomical scales using well-established physics math. Getting the machine to produce results useful for studying nature took two and a half years of engineering adjustments.

Matching up swirls
"We suddenly go from a perfectly still chamber to a little supernova. There was a lot of engineering done to contain the blast and at the same time make it realistic where it hits the gas interface in the visualization window," said Devesh Ranjan, the study's principal investigator and a professor in Georgia Tech's George W. Woodruff School of Mechanical Engineering.

"The hard part was troubleshooting the artifacts that were not part of supernova physics. I spent a year getting rid of things like an extra shock wave bouncing around in the chamber or air leaking in from the room," said Musci, the study's first author and a graduate research assistant in Ranjan's lab. "I also had to make sure that gravity, background radiation, and temperature did not throw off the physics."

The researchers publish their results in The Astrophysical Journal on June 17, 2020. The research was funded by the U.S. Department of Energy's Fusion Energy Science program. Musci plans to collaborate with Lawrence Livermore National Laboratory to compare the machine's gas patterns with actual data on supernova remnants.

Supernova's special blast
Not all nebulas are remnants of supernovas, but many are. They and other supernova remnants start out with a massive star. Stars are balls of gases, which are arranged in layers, and when a star explodes in a supernova, those layers enable the formation of the beautiful swirls.

"On the outside, the gasses have low density and on the inside high density, and very deep in the star, the density begins to force the gases together to make iron in the star's core," Ranjan said.

"After this point, the star runs out of nuclear fuel, so the outward force caused by nuclear fusion stops balancing the inward gravitational force. The extreme gravitation collapses the star," Musci said.

In the center of the star, there is a point explosion, which is the supernova. It sends a blast wave traveling at about a tenth of the speed of light ripping through the gases, jamming their layers together.

Heavier gas in inner layers stabs turbulent outcrops into lighter gas in the outer layers. Then behind the blast wave, pressure drops, stretching the gases back out for a different kind of turbulent mixing.

"It's a hard push followed by a prolonged pull or stretch," Musci said.

Explosive mimics supernova
The researchers used small amounts of a commercially available detonator (containing RDX, or Research Department eXplosive, and PETN, or pentaerythritol tetranitrate) to make the concise miniature blast that sent a clean wave through the interface between the heavier and lighter gases in the machine.

In nature, the blast wave goes out spherically in all directions, and Musci achieved a partial representation of its curvature in the machine's blast wave. In nature and in the machine, interfaces between the gases are full of small, uneven twists and turns called perturbations, and the blast wave whacks them at skewed angles.

"That is important to growing the initial perturbation that leads to turbulence because that unevenness puts a torque on the interface between the gas layers," Musci said.

Convolutions and curlicues ensue to make supernova remnants, which expand for thousands of years to become softer and smoother forms that stir our hearts with their splendor. To physicists, those initial twists are highly recognizable structures interesting for study: Turbulent spikes of heavy gas protruding into light gas, "bubbles" of light gas isolated in areas of heavy gas, and curls typical of early turbulent flow.

"One of the most interesting things we saw related to a mystery about supernovas - they shoot high-density gas called ejecta way out, which may help create new stars. We saw some of this gas propulsion in the device where heavy gas was propagated way out into the light gas," Musci said.

Supernova remnants perpetually expand at speeds of hundreds of miles per second, and the new machine could help refine calculations of those speeds and help characterize remnants' changing forms. The Crab Nebula's supernova was recorded in the year 1054 by Chinese astronomers, but for many other remnants, the machine could also help calculate their moment of birth.

Inertial confinement fusion
The machine's insights would apply in reverse to help with the development of nuclear fusion energy. The process called inertial confinement fusion applies extreme force and heat from the outside inward evenly onto a tiny area where two isotopes of hydrogen gas are layered upon each other, one denser than the other.

The layers are forced together until the atoms' nuclei fuse, unleashing energy. Fusion researchers are striving to eliminate turbulent mixing. What is beautiful in the supernova makes nuclear fusion less efficient.


Related Links
Georgia Institute Of Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Newly observed phenomenon could lead to new quantum devices
Boston MA (SPX) Jun 15, 2020
An exotic physical phenomenon known as a Kohn anomaly has been found for the first time in an unexpected type of material by researchers at MIT and elsewhere. They say the finding could provide new insights into certain fundamental processes that help determine why metals and other materials display the complex electronic properties that underlie much of today's technology. The way electrons interact with phonons - which are essentially vibrations passing through a crystalline material - determine ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Kathy Lueders Selected to Lead NASA's Human Spaceflight Office

Amyloid formation in the International Space Station

Future space travelers may follow cosmic lighthouses

First space tourists will face big risks, as private companies gear up for paid suborbital flights

TIME AND SPACE
Arianespace Vega mission to perform Small Spacecraft Mission Service Proof of Concept flight

Putin: Russia is building defenses against hypersonic missiles

Northrop Grumman rocket boosters arrive at KSC for Artemis I mission

Rocket Lab to demonstrate fastest launch turnaround to date

TIME AND SPACE
Airbus wins next study contract for Martian Sample Fetch Rover

Electrically charged dust storms drive Martian chlorine cycle

NASA's Mars Rover Drivers Need Your Help

ExoMars spots unique green glow at the Red Planet

TIME AND SPACE
Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

TIME AND SPACE
UK space industry consortium calls for greater SME engagement for future satcom services

Northrop Grumman to build 2 C-band satellites for Intelsat

Maxar to Build Four 1300-class Geostationary Communications Satellites for Intelsat

SpaceX launches 58 Starlink, 3 SkySat satellites from Florida

TIME AND SPACE
Targeting the radiation hardened power electronics market for mission critical applications

Hughes Joins with 4-H to Champion Online STEM Education amid Increased Demand for Virtual Learning

Using sunlight to save satellites from a fate of 'space junk'

Northrop Grumman Continues Support for US Air Force Infrared Countermeasures Systems

TIME AND SPACE
Research sheds new light on intelligent life existing across the galaxy

As many as six billion Earth-like planets in our galaxy, according to new estimates

Astronomers discover how long-lived Peter Pan discs evolve

Plant pathogens can adapt to a variety of climates, hosts

TIME AND SPACE
Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.