24/7 Space News
WATER WORLD
This salty gel could harvest water from desert air
MIT engineers have synthesized a superabsorbent material that can soak up a record amount of moisture from the air, even in desert-like conditions. Pictured are the hydrogel discs swollen in water.
This salty gel could harvest water from desert air
by Jennifer Chu for MIT News
Boston MA (SPX) Jun 16, 2023

MIT engineers have synthesized a superabsorbent material that can soak up a record amount of moisture from the air, even in desert-like conditions.

As the material absorbs water vapor, it can swell to make room for more moisture. Even in very dry conditions, with 30 percent relative humidity, the material can pull vapor from the air and hold in the moisture without leaking. The water could then be heated and condensed, then collected as ultrapure water.

The transparent, rubbery material is made from hydrogel, a naturally absorbent material that is also used in disposable diapers. The team enhanced the hydrogel's absorbency by infusing it with lithium chloride - a type of salt that is known to be a powerful dessicant.

The researchers found they could infuse the hydrogel with more salt than was possible in previous studies. As a result, they observed that the salt-loaded gel absorbed and retained an unprecedented amount of moisture, across a range of humidity levels, including very dry conditions that have limited other material designs.

If it can be made quickly, and at large scale, the superabsorbent gel could be used as a passive water harvester, particularly in the desert and drought-prone regions, where the material could continuously absorb vapor, that could then be condensed into drinking water. The researchers also envision that the material could be fit onto air conditioning units as an energy-saving, dehumidifying element.

"We've been application-agnostic, in the sense that we mostly focus on the fundamental properties of the material," says Carlos Diaz-Marin, a mechanical engineering graduate student and member of the Device Research Lab at MIT. "But now we are exploring widely different problems like how to make air conditioning more efficient and how you can harvest water. This material, because of its low cost and high performance, has so much potential."

Diaz-Marin and his colleagues have published their results in a paper appearing in Advanced Materials. The study's MIT co-authors are Gustav Graeber, Leon Gaugler, Yang Zhong, Bachir El Fil, Xinyue Liu, and Evelyn Wang.

"Best of both worlds"
In MIT's Device Research Lab, researchers are designing novel materials to solve the world's energy and water challenges. In looking for materials that can help to harvest water from the air, the team zeroed in on hydrogels - slippery, stretchy gels that are mostly made from water and a bit of cross-linked polymer. Hydrogels have been used for years as absorbent material in diapers because they can swell and soak up a large amount of water when it comes in contact with the material.

"Our question was, how can we make this work just as well to absorb vapor from the air?" Diaz-Marin says.

He and his colleagues dug through the literature and found that others had experimented with mixing hydrogels with various salts. Certain salts, such as the rock salt used to melt ice, are very efficient at absorbing moisture, including water vapor. And the best among them is lithium chloride, a salt that is capable of absorbing over 10 times its own mass in moisture. Left in a pile on its own, lithium chloride could attract vapor from the air, though the moisture would only pool around the salt, with no means of retaining the absorbed water.

So, researchers have attempted to infuse the salt into hydrogel - producing a material that could both hold in moisture and swell to accommodate more water.

"It's the best of both worlds," says Graeber, who is now a principal investigator at Humboldt University in Berlin. "The hydrogel can store a lot of water, and the salt can capture a lot of vapor. So it's intuitive that you'd want to combine the two."

Time to load
But the MIT team found that others reached a limit to the amount of salt they could load into their gels. The best performing samples to date were hydrogels that were infused with 4 to 6 grams of salt per gram of polymer. These samples absorbed about 1.5 grams of vapor per gram of material in dry conditions of 30 percent relative humidity.

In most studies, researchers had previously synthesized samples by soaking hydrogels in salty water and waiting for the salt to infuse into the gels. Most experiments ended after 24 to 48 hours, as researchers found the process was too slow, and not very much salt ended up in the gels. When they tested the resulting material's ability to absorb water vapor, the samples soaked up very little, as they contained little salt to absorb the moisture in the first place.

What would happen if the material synthesis was allowed to go on, say, for days, and even weeks? Could a hydrogel absorb even more salt, if given enough time? For an answer, the MIT team carried out experiments with polyacrylamide (a common hydrogel) and lithium chloride (a superabsorbent salt). After synthesizing tubes of hydrogel through standard mixing methods, the researchers sliced the tubes into thin disks and dropped each disk into a solution of lithium chloride with a different salt concentration. They took the disks out of solution each day to weigh them and determine the amount of salt that had infused into the gels, then returned them to their solutions.

In the end, they found that, indeed, given more time, hydrogels took up more salt. After soaking in salty solution for 30 days, hydrogels incorporated up to 24, versus the previous record of 6 grams of salt per gram of polymer.

The team then put various samples of the salt-laden gels through absorption tests across a range of humidity conditions. They found that the samples could swell and absorb more moisture at all humidity levels, without leaking. Most notably, the team reports that at very dry conditions of 30 percent relative humidity, the gels captured a "record-breaking" 1.79 grams of water per gram of material.

"Any desert during the night would have that low relative humidity, so conceivably, this material could generate water in the desert," says Diaz-Marin, who is now looking for ways to speed up the material's superabsorbent properties.

"The big, unexpected surprise was that, with such a simple approach, we were able to get the highest vapor uptake reported to date," Graeber says. "Now, the main focus will be kinetics and how quickly we can get the material to uptake water. That will allow you to cycle this material very quickly, so that instead of recovering water once a day, you could harvest water maybe 24 times a day."

This research was supported, in part, by the U.S. Office of Energy Efficiency and Renewable Energy and the Swiss National Science Foundation.

Research Report:"Extreme Water Uptake of Hygroscopic Hydrogels Through Maximized Swelling-Induced Salt Loading"

Related Links
Department of Mechanical Engineering
Water News - Science, Technology and Politics

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
WATER WORLD
Space rock holds clues as to how Earth got its water
Tucson AZ (SPX) Jun 14, 2023
Sodium chloride, better known as table salt, isn't exactly the type of mineral that captures the imagination of scientists. However, a smattering of tiny salt crystals discovered in a sample from an asteroid has researchers at the University of Arizona Lunar and Planetary Laboratory excited, because these crystals can only have formed in the presence of liquid water. Even more intriguing, according to the research team, is the fact that the sample comes from an S-type asteroid, a category known to ... read more

WATER WORLD
Virgin Galactic's use of the 'Overview Effect' to promote space tourism is a terrible irony

Diving into practice

Schools, museums, libraries can apply to receive artifacts from NASA

Catastrophic failure assessment of sealed cabin for ultra large manned spacecraft

WATER WORLD
New form of electromagnetic launch will reduce orbital costs by 100-fold

Spanish rocket launch aborted due to last-minute glitch

Seoul military salvages North Korea's space rocket wreckage

Final launch of Europe's Ariane 5 rocket postponed

WATER WORLD
It easier ever view Mars landscapes in high resolution

Curiosity captures Morning and Afternoon on Mars

A Geologist in a Rock Shop: Sols 3859-3860

Up and Over - Curiosity Is Heading East: Sol 3857

WATER WORLD
Tianzhou 5 reconnects with Tiangong space station

China questions whether there is a new moon race afoot

Three Chinese astronauts return safely to Earth

Scientific experimental samples brought back to Earth, delivered to scientists

WATER WORLD
Satellite swarms for science 'grow up' at NASA Ames

CNES, E-Space complete next-generation low earth orbit constellation study

HawkEye 360's Cluster 7 begins operation in record time

York Space Systems acquires Emergent Space Technologies

WATER WORLD
Mitsubishi Electric demonstrates light source module for high-capacity laser links

AFRL demonstrates new augmented reality capability to improve DAF Nondestructive Inspections

Indonesia orders 13 long-range military radars from Thales

Italy sets curbs on Pirelli's Chinese investor Sinochem

WATER WORLD
Gemini North detects multiple heavier elements in atmosphere of hot Exoplanet

Photosynthesis, key to life on Earth, starts with a single photon

Phosphate, a key building block of life, found on Saturn's moon Enceladus

Plate tectonics not required for the emergence of life

WATER WORLD
ASU study: Jupiter's moon Europa may have had a slow evolution

Colorful Kuiper Belt puzzle solved by UH researchers

Juice deployments complete: final form for Jupiter

First observation of a Polar Cyclone on Uranus

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.