![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Berlin, Germany (SPX) May 20, 2022
Thermal insulation is not only important for buildings, but also in quantum technologies. While insulation panels around a house keep the heat inside, quantum devices require insulation against heat from the outside world, as many quantum effects are only stable at low temperatures. What is needed are materials with extremely low thermal conductivity that are also compatible with the materials used in quantum technology. A team led by Dr Klaus Habicht from HZB has now taken a big step forward in this direction. Using a novel sintering process, they produced samples of silicon and silicon aluminium that were compacted under pressure and an electric field for a few minutes at high temperature. Before that, further microstructures were added to the Si starting material using electrochemical etching processes, which further suppress heat transport. "Silicon is the ideal material here for many reasons, in particular it fits possible devices based on silicon qubits," Habicht points out.
Obstacles for phonon transport
Separating the contributions
Microstructures evaluated in detail The measured data matched the modelled results extremely well. This means that it is now possible to determine whether, in a sample with a given microstructure, it is mainly the pores or rather the nanocrystallites that are responsible for the suppression of heat conduction.
Materials design
Research Report:Characterization and modeling of the temperature-dependent thermal conductivity in sintered porous silicon-aluminum nanomaterials
![]() ![]() The way of water: Making advanced electronics with H2O Melbourne, Australia (SPX) May 18, 2022 Water is the secret ingredient in a simple way to create key components for solar cells, X-ray detectors and other optoelectronics devices. The next generation of photovoltaics, semiconductors and LEDs could be made using perovskites - an exciting and versatile nanomaterial with a crystal structure. Perovskites have already shown similar efficiency to silicon, are cheaper to make, and feature a tuneable bandgap, meaning the energy they are able to absorb, reflect or conduct can be changed to ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |