. | . |
The uneven universe by Staff Writers Munster, Germany (SPX) Dec 06, 2021
It is almost always assumed in cosmological calculations that there is a even distribution of matter in the universe. This is because the calculations would be much too complicated if the position of every single star were to be included. In reality, the universe is not uniform: in some places there are stars and planets, in others there is just a void. Physicists Michael te Vrugt and Prof. Raphael Wittkowski from the Institute of Theoretical Physics and the Center for Soft Nanoscience (SoN) at the University of Munster (Germany) have, together with physicist Dr. Sabine Hossenfelder from the Frankfurt Institute for Advanced Studies (FIAS; Germany), developed a new model for this problem. Their starting point was the Mori-Zwanzig formalism, a method for describing systems consisting of a large number of particles with a small number of measurands. The results of the study have now been published in the journal "Physical Review Letters". Background: The theory of general relativity developed by Albert Einstein is one of the most successful theories in modern physics. Two of the last five Nobel Prizes for Physics had associations with it: in 2017 for the measurement of gravitational waves, and in 2020 for the discovery of a black hole at the centre of the Milky Way. One of the most important applications of the theory is in describing the cosmic expansion of the universe since the Big Bang. The speed of this expansion is determined by the amount of energy in the universe. In addition to the visible matter, it is above all the dark matter and dark energy which play a role here - at least, according to the Lambda-CDM model currently used in cosmology. "Strictly speaking, it is mathematically wrong to include the mean value of the universe's energy density in the equations of general relativity", says Sabine Hossenfelder. The question is now how "bad" this mistake is. Some experts consider it to be irrelevant, others see in it the solution to the enigma of dark energy, whose physical nature is still unknown. An uneven distribution of the mass in the universe may have an effect on the speed of cosmic expansion. "The Mori-Zwanzig formalism is already being successfully used in many fields of research, from biophysics to particle physics," says Raphael Wittkowski, "so it also offered a promising approach to this astrophysical problem." The team generalised this formalism so that it could be applied to general relativity and, in doing so, derived a model for cosmic expansion while taking into consideration the uneven distribution of matter in the universe. The model makes a concrete prediction for the effect of these so-called inhomogeneities on the speed of the expansion of the universe. This prediction deviates slightly from that given by the Lambda-CDM model and thus provides an opportunity to test the new model experimentally. "At present, the astronomical data are not precise enough to measure this deviation," says Michael te Vrugt, "but the great progress made - for example, in the measurement of gravitational waves - gives us reason to hope that this will change. Also, the new variant of the Mori-Zwanzig formalism can also be applied to other astrophysical problems - so the work is relevant not only to cosmology."
Research Report: Mori-Zwanzig Formalism for General Relativity: A New Approach to the Averaging Problem
Record-breaking simulations of large-scale structure formation in the universe Tsukuba, Japan (SPX) Dec 02, 2021 Current simulations of cosmic structure formation do not accurately reproduce the properties of ghost-like particles called neutrinos that have been present in the Universe since its beginning. But now, a research team from Japan has devised an approach that solves this problem. In a study published this month in SC '21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, researchers at the University of Tsukuba, Kyoto University, and the U ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |