. | . |
The stellar nurseries of distant galaxies by Staff Writers Geneva, Switzerland (SPX) Sep 17, 2019
Star clusters are formed by the condensation of molecular clouds, masses of cold, dense gas that are found in every galaxy. The physical properties of these clouds in our own galaxy and nearby galaxies have been known for a long time. But are they identical in distant galaxies that are more than 8 billion light-years away? For the first time, an international team led by the University of Geneva (UNIGE) has been able to detect molecular clouds in a Milky Way progenitor, thanks to the unprecedented spatial resolution achieved in such a distant galaxy. These observations, published in Nature Astronomy, show that the distant clouds have a higher mass, density and internal turbulence than the clouds hosted in nearby galaxies and that they produce far more stars. The astronomers attribute these differences to the ambient interstellar conditions in distant galaxies, which are too extreme for the molecular clouds typical of nearby galaxies to survive. Molecular clouds consist of dense, cold molecular hydrogen gas that swirls around at supersonic velocities, generating density fluctuations that condense and form stars. In nearby galaxies, such as the Milky Way, a molecular cloud produces between 10+3 and 10+6 stars. In far-off galaxies, however, located more than 8 billion light-years away, astronomers have observed gigantic star clusters containing up to 100 times more stars. Why is there such a difference?
Exceptional observation made possible using a cosmic magnifying glass "Gravitational lenses are a natural telescope that produces a magnifying-glass effect when a massive object is aligned between the observer and the distant object," explains Miroslava Dessauges, a researcher in the Department of Astronomy in UNIGE's Faculty of Science and first author of the study. "With this effect, some parts of distant galaxies are stretched on the sky and can be studied at an unrivalled resolution of 90 light-years!" ALMA, meanwhile, can be employed to measure the level of carbon monoxide, which acts as a tracer of molecular hydrogen gas that constitutes the cold clouds. This resolution made it possible to characterise the molecular clouds individually in a distant galaxy, nicknamed the "Cosmic Snake", 8 billion light-years away. "It's the first time we've been able to pinpoint molecular clouds one from each other," says Daniel Schaerer, professor in UNIGE's Department of Astronomy. The astronomers were therefore able to compare the mass, size, density and internal turbulence of molecular clouds in nearby and distant galaxies. "It was thought that the clouds had the same properties in all galaxies at all times, continues the Geneva-based researcher, but our observations have demonstrated the opposite!"
Molecular clouds resistant to extreme environments The researchers could link the differences in the physical properties of the clouds with the galactic environments, which are more extreme and hostile in far-off galaxies than in closer galaxies. "A molecular cloud typically found in a nearby galaxy would instantly collapse and be destroyed in the interstellar medium of distant galaxies, hence its enhanced density and turbulence guarantee its survival and equilibrium," explains Miroslava Dessauges. "The characteristic mass of the molecular clouds in the Cosmic Snake appears to be in perfect agreement with the predictions of our scenario of fragmentation of turbulent galactic disks. As a result, this scenario can be put forward as the mechanism of formation of massive molecular clouds in distant galaxies," adds Lucio Mayer, a professor at the Centre for Physical and Cosmological Theory at the University of Zurich. The international team also discovered that the efficiency of star formation in the Cosmic Snake galaxy is particularly high, likely triggered by the highly supersonic internal turbulence of the clouds. "In nearby galaxies, a molecular cloud forms about 5% of its mass in stars. In distant galaxies, this number climbs to 30%," observes Daniel Schaerer. The astronomers will now study other distant galaxies in order to confirm their observational results obtained for the Cosmic Snake. Miroslava Dessauges says in conclusion: "We'll also push the resolution even further by taking advantage of the unique performance of the ALMA interferometer. In parallel, we need to understand in more detail the ability of molecular clouds in distant galaxies to form stars so efficiently."
Scientists discover a new type of pulsating star Santa Barbara CA (SPX) Aug 05, 2019 Scientists can tell a lot about a star by the light it gives off. The color, for example, reveals its surface temperature and the elements in and around it. Brightness correlates with a star's mass, and for many stars, brightness fluctuates, a bit like a flickering candle. A team of scientists led by UC Santa Barbara researcher Thomas Kupfer recently discovered a new class of these pulsators that vary in brightness every five minutes. Their results appeared in The Astrophysical Journal Letters. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |