24/7 Space News
PHYSICS NEWS
The search for the missing gravitational signal
LISA - Laser Interferometer Space Antenna
The search for the missing gravitational signal
by Staff Writers
Milan, Italy (SPX) Mar 28, 2023

Every year, hundreds of thousands of pairs of black holes merge in a cosmic dance that emits gravitational waves in every direction. Since 2015, the large ground-based LIGO, Virgo and KAGRA interferometers have made it possible to detect these signals, although only about a hundred such events, an infinitesimal fraction of the total, have been observed. Most of the waves remain 'indistinguishable', superimposed and added together, creating a flat, diffuse background signal that scientists call the 'stochastic gravitational wave background' (SGWB).

New SISSA research, published in The Astrophysical Journal, proposes using a constellation of three or four space interferometers to map the flat and almost perfectly homogeneous background in a search for ripples. These small fluctuations, known to scientists as anisotropies, hold the information needed to understand the distribution of gravitational wave sources on the largest cosmological scale.

Researchers are convinced that next-generation detectors, such as the Einstein Telescope and the Laser Interferometer Space Antenna (LISA), will make direct measurement of the gravitational wave background possible in the foreseeable future. "Measuring these background fluctuations, known more correctly as anisotropies, will however continue to be extremely difficult, as identifying them requires a very high level of angular resolution not possessed by current and next generation survey instruments", explains Giulia Capurri, a SISSA PhD student and first author of the study.

Capurri, supervised by Carlo Baccigalupi and Andrea Lapi, has suggested that this problem could be overcome by means of a 'constellation' of three or four space interferometers in solar orbit and covering a distance approximating that between Earth and the Sun. With increasing separation, interferometers achieve better angular resolution, improving their ability to distinguish sources of gravitational waves. "A constellation of space interferometers orbiting the Sun could enable us to see subtle fluctuations in the gravitational background signal, thus allowing us to extract valuable information about the distribution of black holes, neutron stars and all other sources of gravitational waves in the universe" states Capurri.

Following the success of the LISA project's space mission test, there are currently two proposals for the creation of space-based interferometer constellations: one European - the Big Bang Observatory (BBO), and one Japanese - the Deci-hertz Interferometer Gravitational-wave Observatory (DECIGO).

"This represents one of the earliest work to provide specific predictions of the size of the stochastic background of gravitational waves by a constellation of instruments orbiting the Sun. Together with further similar projects whose details will be published in due course, they will be crucial for developing an optimal design for future observational instruments that we hope will be built and commissioned in the coming decades" concludes Carlo Baccigalupi, professor of theoretical cosmology at SISSA.

In the era of multimessenger astronomy, which began with ground-based interferometers such as LIGO and Virgo, the gravitational-wave background could pave the way to a new understanding of the universe on the large scale, as has already happened with the cosmic microwave background.

Research Report:Searching for Anisotropic Stochastic Gravitational-wave Backgrounds with Constellations of Space-based Interferometers

Related Links
Scuola Internazionale Superiore di Studi Avanzati
The Physics of Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
PHYSICS NEWS
Astronomers observe light bending around an isolated white dwarf
Cambridge UK (SPX) Feb 03, 2023
Astronomers have directly measured the mass of a dead star using an effect known as gravitational microlensing, first predicted by Einstein in his General Theory of Relativity, and first observed by two Cambridge astronomers 100 years ago. The international team, led by the University of Cambridge, used data from two telescopes to measure how light from a distant star bent around a white dwarf known as LAWD 37, causing the distant star to temporarily change its apparent position in the sky. ... read more

PHYSICS NEWS
NASA, Boeing aiming for July launch of Starliner space capsule

Russia's only female cosmonaut praises ISS mission

THE NEW GUYS: The Historic Class of Astronauts that Changed the Face of Space Travel

Virgin Orbit suspends operations, in wake of failed orbital launch

PHYSICS NEWS
Momentus' pioneering propulsion system completes initial tests in space

NASA rocket engines re-engineered as production restarts

Boeing pushes Starliner test flight to July

The Long March 2D carrier rocket successfully launched a four-star rocket

PHYSICS NEWS
MOXIE Celebrates 2 Years on Mars: Discoveries and Work Left To Do

First Mars Sample Depot shaped by Rover, Lander, and Helicopter

A Picture Perfect Day - Or To Be More Exact, a Day Perfect for Taking Pictures Sols 3783-3784

Flight 49 Preview - By the Numbers

PHYSICS NEWS
China's Shenzhou XV astronauts complete 3rd spacewalk

China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

Shenzhou XV crew takes second spacewalk

PHYSICS NEWS
SpaceX sends 56 Starlink satellites into low-Earth orbit

Proba-3 complete: Formation-flying satellites fully integrated

Constellations of opportunities

O'Shaughnessy Ventures announces investment in Atomos Space

PHYSICS NEWS
OpenAI's ChatGPT blocked in Italy: privacy watchdog

WVU researchers explore alternative sources to help power space

Big E3 videogame expo in US is canceled

What can we do about all the plastic waste

PHYSICS NEWS
New paper investigates exoplanet climates

Planet hunting and the origins of life

JWST confirms giant planet atmospheres vary widely

Small stars may host bigger planets than previously thought

PHYSICS NEWS
Sabotaging Juice

Redness of Neptunian asteroids sheds light on early Solar System

Hubble monitors changing weather and seasons at Jupiter and Uranus

An explaination for unusual radar signatures in the outer solar system

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.