. | . |
The protective layer of prehistoric land plants by Staff Writers Breisgau, Germany (SPX) Mar 09, 2017
An international research team has discovered a biochemical pathway that is responsible for the development of moss cuticles. These waxy coverings of epidermal cells are the outer layer of plants and protect them from water loss. The biologists discovered this mechanism that facilitated the evolutionary transition of plants from fresh water to land in the moss Physcomitrella patens. The team was led by Professor Ralf Reski from the University of Freiburg/Germany and Doctor Daniele Werck-Reichhart from the Centre National de la Recherche Scientifique (CNRS) Institute of Plant Molecular Biology (IBMP) in Strasbourg/France and published their results in the journal Nature Communications. Plant cuticles came into being more than 450 million years ago when the first plants colonized the hitherto hostile land masses. Because the waxy cuticles protect against water loss, they enabled the spread of plants on land and the subsequent evolution of our complex ecosystems. The seed plants that evolved later use similar chemical reactions to form the biopolymers lignin, cutin and suberin. Especially lignification of cell walls contributes to wood production and helps trees to grow several meters in height. In contrast, mosses do not contain lignin and are tiny. It remained unknown which biochemical pathway contributes to the protective layer on moss cells. The researchers now found that the enzyme CYP98 from the family of cytochromes P450 plays a crucial role: While it initiates the production of lignin in seed plants, it is responsible for the development of a phenol-enriched cuticle in Physcomitrella. When they switched off the gene that is responsible for the synthesis of this enzyme, moss developed without cuticles. As a result, these moss plants were not protected against the environment and, moreover, were not able to form complex tissues: the developing organs fused and their further development was halted. The researchers could compensate this genetic defect by feeding the plants with caffeic acid, which they identified as the main component of the moss phenolic metabolism. The biologists conclude that the moss cuticle predated the evolution of lignin, cutin and suberin and may therefore originate from the last common ancestor of mosses and seed plants - the prehistoric plants which left the fresh water to dwell on rocks and thus laid the foundation for the development of all current ecosystems on the mainland. "Our results reveal one of the earliest evolutionary innovations that helped the first plants to survive on land over 450 million years ago," explains Reski. "It furthers suggests new biotechnology strategies for engineering biopolymers in plants beyond the well-known lignin production of trees." Werck-Reichhart and Reski were Senior Fellows of the Freiburg Institute for Advanced Studies (FRIAS) and the University of Strasbourg Institute for Advanced Study (USIAS) which funded their German-French co-operation project "METABEVO". Reski holds the Chair of Plant Biotechnology at the Faculty of Biology of the University of Freiburg/Germany. He is a founding principal investigator of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies. Researchers from the University of Strasbourg/France, the University of Victoria/Canada and from Cornell University/USA were also involved in this study. Hugues Renault, Annette Alber, Nelly A. Horst, Alexandra Basilio Lopes, Eric A. Fich, Lucie Kriegshauser, Gertrud Wiedemann, Pascaline Ullmann, Laurence Herrgott, Mathieu Erhardt, Emmanuelle Pineau, Jurgen Ehlting, Martine Schmitt, Jocelyn K.C. Rose, Ralf Reski, Daniele Werck-Reichhart (2017): A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nature Communications 8, 14713.
Edmonton, Canada (SPX) Mar 06, 2017 Paleontologists at the University of Alberta have developed a new theory to explain why the ancient ancestors of dinosaurs stopped moving about on all fours and rose up on just their two hind legs. Bipedalism in dinosaurs was inherited from ancient and much smaller proto-dinosaurs. The trick to this evolution is in their tails explains Scott Persons, postdoctoral fellow and lead author on ... read more Related Links University of Freiburg Explore The Early Earth at TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |