![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Vienna, Austria (SPX) Nov 13, 2017
What happens when light passes through a glass of milk? It enters the liquid, is scattered unpredictably at countless tiny particles and exits the glass again. This effect makes milk appear white. The specific paths that the incident light beam takes depends, however, on the opacity of the liquid: A transparent substance will allow the light to travel through on a straight line, in a turbid substance the light will be scattered numerous times, travelling on more complicated zig-zag trajectories. But astonishingly, the average total distance covered by the light inside the substance is always the same. Professor Stefan Rotter and his team (TU Wien, Austria) predicted this counter-intuitive result together with French colleagues three years ago. Now he and his collaborators from Paris verified this theory in an experiment. The results have now been published in the journal "Science". "We can get a simplified idea of this phenomenon when we imagine light as a stream of tiny particles", says Stefan Rotter. "The trajectories of the photons in the liquid depend on the number of obstacles they encounter." In a clear, completely transparent liquid, the particles travel along straight lines, until they leave the liquid on the opposite side. In an opaque liquid, however, the trajectories are more complicated. The beam of light is scattered frequently along its way, it changes its direction many times, and it can only reach the opposite side after covering a long distance inside the opaque substance. But in a turbid liquid, there are also many photons, which will never reach the opposite side. They do not completely traverse the liquid, but just penetrate a little below the surface and after a few scattering events they exit the liquid again, so their trajectories are rather short. "It can be shown mathematically that, rather surprisingly, these two effects exactly balance", says Stefan Rotter. "The average path length inside the liquid is thus always the same - independent of whether the liquid is transparent or opaque." At second glance, the situation is a bit more complicated: "We have to take into account that light travels through the liquid as a wave rather than as a particle along a specific trajectory", says Rotter. "This makes it more challenging to come up with a mathematical description, but as it turns out, this does not change the main result. Also if we consider the wave properties of light the mean length associated with light penetrating the liquid always stays the same, irrespective of how strongly the wave is scattered inside the medium."
Experiments in troubled water Now the same research groups managed to verify the remarkable result in an experiment. Test tubes were filled with water, which was then obfuscated with nanoparticles. As more nanoparticles are added, the light is scattered more strongly and the liquid appears more turbid. "When light is sent through the liquid, the way it is scattered changes continuously, because the nanoparticles keep moving in the liquid", says Stefan Rotter. "This leads to a characteristic sparkling effect on the tubes' outer surface. When this effect is measured and analysed carefully, it can be used to deduce the pathlength of the light wave inside the liquid." And indeed: irrespective of the number of nanoparticles, no matter whether the light was sent through an almost perfectly transparent sample or a milk-like liquid, the average path length of light was observed to be always the same. This result helps to understand the propagation of waves in disordered media. There are many possible applications for this: "It is a universal law, which in principle holds for any kind of wave", says Stefan Rotter. "The same rules that apply to light in an opaque liquid also hold for sound waves, scattered at tiny objects in air or even gravity waves, travelling through a galaxy. The basic physics is always the same." The French teams involve Romolo Savo, Ulysse Najar, Sylvain Gigan at the Laboratoire-Kastler-Brossel (experiment) and Romain Pierrat, Remi Carminati at the Institut Langevin (theory).
![]() Washington DC (SPX) Nov 08, 2017 An international team of researchers has developed a new light-based manipulation method that could one day be used to mass produce electronic components for smartphones, computers and other devices. A cheaper and faster way to produce these components could make it less expensive to connect everyday objects - from clothing to household appliances - to the internet, advancing the concept known a ... read more Related Links Vienna University of Technology Stellar Chemistry, The Universe And All Within It
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |