24/7 Space News
MARSDAILY
The mysterious origins of Martian meteorites
File illustration of Black Beauty
The mysterious origins of Martian meteorites
by Staff Writers
Pasadena CA (SPX) May 05, 2023

In August 1865, a 10-pound rock fell from space to Earth, landing with a bang in the remote village of Sherghati, India. After being recovered by witnesses to the event, the stone passed into the possession of a local British magistrate who endeavored to identify the source of the strange object. After more than a century of studying the meteorite fragments-so-called shergottites-researchers in the 1980s finally determined its alien origins: our neighboring planet, Mars.

Until humans are able to bring back samples from Mars, the only pieces of the Red Planet found on Earth are Martian meteorites such as the shergottites. The journey for these little Martian travelers has been violent: for Mars rocks to get to Earth, they must have been ejected from the Red Planet's surface with enough force to escape Martian gravity. This ejection was likely due to a large impact on Mars. The rocks withstood the massive temperatures and pressures of this impact and flew through the vacuum of space, eventually crash-landing on our own planet.

For decades, scientists have worked on modeling the kind of Martian impact events that send bits of the Red Planet to Earth. Now, researchers at Caltech and the Jet Propulsion Laboratory (JPL), which Caltech manages for NASA, have conducted experiments to simulate the so-called "shock pressure" experienced by Martian rocks. They have found that the pressure required to launch a rock from Mars into space is much lower than originally thought.

The research was conducted in the laboratory of Paul Asimow (MS '93, PhD '97), the Eleanor and John R. McMillan Professor of Geology and Geochemistry. The study is described in a paper appearing in the journal Science Advances on May 3 and is a collaboration with JPL.

Meteorites from varied sources have been discovered on Earth for millennia, but their origins were not known until much more recently. As NASA's Viking orbiters made measurements of Mars's atmospheric composition in the late 1970s, Caltech's Ed Stolper (now the Judge Shirley Hufstedler Professor of Geology) was one of the first to suggest that shergottites are from Mars-confirmed later when gases in the thin Martian atmosphere matched up with the gases encapsulated in the meteorites.

But that is not all a meteorite's composition can tell us about its journey. One major component of Martian rocks is the crystalline mineral plagioclase. Under high pressures, such as an intense impact, plagioclase transforms into the glassy material known as maskelynite. Finding maskelynite in a rock, therefore, indicates the types of pressure the sample came into contact with. In the last five years, Martian meteorites have been discovered with a blend of both plagioclase and maskelynite, indicating an upper bound for the pressures they were subjected to.

In the new study, led by Caltech staff scientist Jinping Hu, the team conducted experiments to smash plagioclase-containing rocks from Earth and observe how the mineral transforms under pressure. The team developed a more accurate method to simulate Martian impacts in shock-recovery experiments, utilizing a powerful "gun" to blast rocks with projectiles traveling over five times the speed of sound. Previous shock-pressure experiments required reverberating shock waves through a steel chamber, which gives an inaccurate picture of what happens during an impact event on Mars.

"We're not on Mars, so we can't watch a meteorite strike in person," says Yang Liu, a planetary scientist at JPL and a co-author on the study. "But we can recreate a similar kind of impact in a lab setting. By doing so, we found it takes much less pressure to launch a Mars meteorite than we thought."

Previous experiments had shown that plagioclase turns into maskelynite at a shock pressure of 30 gigapascals (GPa), which is 300,000 times the atmospheric pressure one experiences at sea level, or 1,000 times the pressure a submersible comes into contact with while diving beneath 3 kilometers of ocean water. This new study shows that the transition actually happens at around 20 GPa-a significant difference from previous experiments. In particular, the new pressure threshold is consistent with evidence from other high-pressure minerals in these meteorites indicating that their shock pressures must have been less than 30 GPa. Nine out of the 10 high-pressure minerals found in Martian meteorites were discovered at Caltech in studies led by mineralogist Chi Ma, Caltech's director of analytical facilities, and a co-author of the study.

"It has been a significant challenge to model an impact that can launch intact rocks from Mars while shocking them to 30 GPa," Asimow says. "In this context, the difference between 30 GPa and 20 GPa is significant. The more accurately we can characterize the shock pressures experienced by a meteorite, the more likely it becomes that we can identify the impact crater on Mars from which it originated."

The paper is titled "Shock-recovered maskelynite indicates low-pressure ejection of shergottites from Mars." Hu, Asimow, Liu, and Ma are co-authors. Funding was provided by NASA, Caltech-JPL, and the National Science Foundation.

Research Report:Shock-recovered maskelynite indicates low-pressure ejection of shergottites from Mars."

Related Links
Caltech
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
MARSDAILY
NASA study seeks to understand impact effects on Mars rocks
Greenbelt MD (SPX) Feb 16, 2023
A NASA study describes how rocks could have been "shocked" and changed by meteorite impacts, once frequent on ancient Mars. This will improve our analysis of rock samples collected from the Red Planet. "Because we're counting on these samples to reveal a record of Mars' geologic past, it would be important for us to understand if and how the rocks have been altered," said Dr. Svetlana Shkolyar, a planetary scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The heat and pressu ... read more

MARSDAILY
Virgin to launch commercial spaceflights in June

SpaceX set to launch Vast's commercial space station and inaugural human spaceflight mission

NASA launches SBIR Ignite Catalyst Program for founders and entrepreneurs

Prep in the pool for Europe's next astronauts

MARSDAILY
Wenchang Spacecraft Launch Site can launch new-generation rockets

New standard will aid in development of spaceport descriptions

China's reusable experimental spacecraft successfully lands

Rocket Lab to launch small satellite swarm for NASA

MARSDAILY
Ubajara drill site gets green light: Sols 3823-3824

Check And Double Check: Sols 3821-3822

These sounds are out of this world

Chasms on the flanks of a Martian volcano

MARSDAILY
Tianzhou-5 cargo craft separates from China's space station

China's cargo craft Tianzhou 6 ready for launch

Tianzhou 6 docks with Tiangong space station

Final frontier is no longer alien

MARSDAILY
How NASA's work led to commercial spaceflight revolution

SpaceX launches 51 Starlink satellites from California

UK gives Viasat clearance to acquire Inmarsat

Virginia Tech, George Mason to develop networking for satellite constellations

MARSDAILY
Upcoming ISS project will test 3D materials for satellite manufacturing

Great balls of fire! 'Rocket debris' lights up Japan night

General Atomics delivers spacecraft simulator supporting NASA TSIS-2 program

Arianespace to launch the first active debris removal ClearSpace mission with Vega C

MARSDAILY
Researchers measure the light emitted by a sub-Neptune planet's atmosphere for the first time

Webb looks for Fomalhaut's asteroid belt and finds much more

Webb takes closest look yet at mysterious planet

Hubble follows shadow play around planet-forming disk

MARSDAILY
NASA: Up to 4 of Uranus' moons could have water

New video series captures team working on NASA's Europa Clipper

Work continues to deploy Juice RIME antenna

Juice's first taste of science from space

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.