|
. | . |
|
by Staff Writers Trieste, Italy (SPX) Sep 08, 2015
Magnetism and ferroelectricity: two properties which are particularly important for technology. The former is well known in empirical uses: it makes the needle of the compass point towards the North Pole, a magnetic field can align magnetic moments called spin of the electrons that make up the material. The latter is the electric form of magnetism. Ferroelectric materials maintain electric polarization even after the electrical field that caused it is removed. The two properties are extremely useful, and would be even more so if they coexisted in the same material. At the moment one precludes the other: a material is either ferroelectric or magnetic. Things may soon change. A new study conducted by SISSA and Northwestern University (Illinois, USA) published in the review Physical Review Letters, proposes a completely new model for creating these "multiferroic" materials. "Ours is certainly not the first attempt at obtaining a material of this kind, but up to this point there has been little in terms of satisfying results," notes Massimo Capone, SISSA researcher and one of the authors of the study. "Our method is based on a surprising system." Capone and his colleagues' work is a theoretical study which will serve as a guide for developing the material itself. "Our approach is based on creating a sort of sandwich with layers of Lithium Osmate, a ferroelectric metallic material, alternating with insulating material. Adding insulation causes magnetic properties to emerge from two non-magnetic materials. This arrangement, which we refer to in jargon as heterostructures, slows down electrons in the system, and it is this phenomenon that leads to the emergence of magnetism," explains Gianluca Giovanetti, SISSA/CNR IOM researcher, and one of the authors of the study. "Our theoretical model shows a clear effect, and furthermore, we show that it is possible to control ferroelectricity with magnetism, another important property," concludes Capone. "The next step will be to test the material itself."
Related Links International School of Advanced Studies (SISSA) Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |