. | . |
The morphological characteristics of precipitation areas affects precipitation intensity by Staff Writers Hefei, China (SPX) Feb 04, 2021
New research suggests that the rate of rainfall within a storm system is linked to the structure and form of the precipitation area as seen on radar. This discovery relies heavily on the "morphology" of radar signatures, including shape (big, small), and size (high, short or plump, thin). Compared to buying diamonds, morphological characteristics are an important reference factor for pricing. Fascinated by "popcorn-shaped" clouds over the Tibetan Plateau, atmospheric scientists have been inspired to study the relationship between cloud shape, precipitation intensity, and the morphology of radar signatures. "It is not easy to find the information we need from the abundant data," says Dr. CHEN Yilun from the University of Science and Technology of China (USTC) of CAS, the lead author of a precipitation area study recently published in Advances in Atmospheric Sciences. "It is necessary to develop an objective method to identify precipitation areas and definite its morphological characteristics." A precipitation area, or precipitation object, is a system composed of spatially continuous precipitation pixels. Essentially, this is how a storm appears on radar. Areas sometimes look organized, such as the spiral belts, or rain bands, of tropical cyclones. More often, they show chaotic forms that are difficult to describe. That said, plentiful radar data in the Tibetan Plateau has led to important discoveries. "Linear precipitation areas have the lowest rain rate, whereas square-shaped precipitation areas have the highest rain rate over the Tibetan Plateau," says Dr. CHEN. "This phenomenon is most significant over the eastern Tibetan Plateau." Modern dual-polarization radar allows for raindrop size analysis and a vertical (3D) cross section of a storm. While traditional echoes were considered in this study, the vertical structure of the precipitation area is notably sensitive to both size and 3D morphology. "The morphological characteristics of precipitation areas are closely related to the precipitation intensity," says Prof. FU Yunfei, a corresponding author in this study and professor of USTC. "It could potentially be used to forecast precipitation and verify numerical models."
Physicists have developed new material for water desalination Vladivostok, Russia (SPX) Feb 02, 2021 Titanium dioxide nanoparticles decorated by gold absorb about 96% of the solar spectrum and turn it into heat. The material can accelerate the evaporation in desalination plants up to 2.5 times and can track hazardous molecules and compounds. An international research team with representatives from Far Eastern Federal University (FEFU), ITMO University, and the Far Eastern Branch of the Russian Academy of Sciences, published a related article in ACS Applied Materials and Interfaces. Access to safe ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |