24/7 Space News
STELLAR CHEMISTRY
The metalens meets the stars
This 10-centimeter-diameter glass metalens can image the sun, the moon and distant nebulae with high resolution. (Credit: Capasso Lab/Harvard SEAS)
The metalens meets the stars
by Leah Burrows for Harvard News
Boston MA (SPX) Jan 18, 2024

Metalenses have been used to image microscopic features of tissue and resolve details smaller than a wavelength of light. Now they are going bigger. Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a 10-centimeter-diameter glass metalens that can image the sun, the moon and distant nebulae with high resolution. It is the first all-glass, large-scale metalens in the visible wavelength that can be mass produced using conventional CMOS fabrication technology.

"The ability to accurately control the size of tens of billions of nanopillars over an unprecedentedly large flat lens using state-of-the-art semiconductor foundry processes is a nanofabrication feat that opens exciting new opportunities for space science and technology," said Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS and senior author of the paper.

Most flat metalenses, which use millions of pillar-like nanostructures to focus light, are about the size of a piece of glitter. In 2019, Capasso and his team developed a centimeter-scale metalens using a technique called deep-ultraviolet (DUV) projection lithography, which projects and forms a nanostructure pattern that can be directly etched into the glass wafer, eliminating the time-consuming writing and deposition processes that were required for previous metalenses.

DUV projection lithography is commonly used to pattern fine lines and shapes in silicon chips for smartphones and computers. Joon-Suh Park, a former graduate student at SEAS and current postdoctoral fellow in Capasso's team, demonstrated that the technique could not only be used to mass produce metalenses but also increase their size for applications in virtual and augmented reality.

But making the metalens even larger for applications in astronomy and free-space optical communications posed an engineering problem.

"There is a major limitation with the lithography tool because these tools are used to make computer chips, so chip size is restricted to no more than 20 to 30 millimeters," said Park, co-first author of the paper. "In order to make a 100-millimeter diameter lens, we needed to find a way around this limitation."

Park and the team developed a technique to stitch together several patterns of nanopillars using the DUV projection lithography tool. By dividing the lens into 25 sections but using only the 7 sections of a quadrant considering the rotational symmetry, the researchers showed that DUV projection lithography could pattern 18.7 billion designed nanostructures onto a 10-centimeter circular area in a matter of minutes. The team also developed a vertical glass etching technique that allows the creation of high-aspect ratio, smooth-sidewall nanopillars etched into glass.

"Using the same DUV projection lithography, one could produce large-diameter, aberration-correcting meta-optics or even larger lenses on larger glass diameter wafers as the corresponding CMOS foundry tools become increasingly available in the industry," said Soon Wei Daniel Lim, a postdoctoral fellow at SEAS and co-first author of the paper.

Lim played a lead role in the full simulation and characterization of all the possible fabrication errors that could arise during mass-manufacturing processes and how they could impact the optical performance of metalenses.

After addressing possible manufacturing challenges, the researchers demonstrated the power of the metalens in imaging celestial objects.

Mounting the metalens on a tripod with a color filter and camera sensor, Park and the team took to the roof of Harvard's Science Center. There, they imaged the Sun, the moon and the North America nebula, a dim nebula in the constellation Cygnus about 2,590 light years away.

"We were able to get very detailed images of the Sun, the moon and the nebula that are comparable to images taken by conventional lenses" said Arman Amirzhan, a graduate student in the Capasso Lab and co-author of the paper.

Using only the metalens, the researchers were able to image the same cluster of sunspots as a NASA image taken that same day.

The team also demonstrated that the lens could survive exposure to extreme heat, extreme cold and the intense vibrations that would occur during a space launch without any damage or loss in optical performance.

Because of its size and monolithic glass composition, the lens could also be used for long-range telecommunications and directed energy transport applications.

The research is published in ACS Nano.

Research Report:All-Glass 100 mm Diameter Visible Metalens for Imaging the Cosmos

Related Links
Harvard School of Engineering and Applied Sciences
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Calibrating from the cosmos
Upton NY (SPX) Jan 17, 2024
A unique "passenger" is joining an upcoming mission to the moon. In 2026, physicists are planning to operate a radio telescope on the far side of the moon-an unforgiving environment that poses tremendous challenges for research equipment to survive, but also the promise of enormous scientific payoff. Called LuSEE-Night, the project aims to access lingering radio waves from the universe's ancient past, peering into an era of the cosmos that's never been observed before. Now, thanks to new funding f ... read more

STELLAR CHEMISTRY
Sierra Space unveils full-scale prototype of expandable space station structure

European crew arrives at ISS on private mission

Salad in space? New study says it's not a healthy choice

Ax-3 Crew Joins Expedition 70 in Space Station for Dual Operations and Research

STELLAR CHEMISTRY
CAS Space achieves new milestone with Kinetica 1 Y3 launch deploying 5 satellites

China's LandSpace achieves new feat with Zhuque-3's Vertical Recovery Test

Axiom launches third mission to ISS, carrying European space hopes

Equatorial Launch Australia unveils advanced horizontal integration facility

STELLAR CHEMISTRY
Buried water ice at the Martian equator

Sols 4076-4077: Driving Into Springtime

A Fractured Filled Plan: Sols 4073-4075

Ingenious Flying Robot Phones Home From Mars

STELLAR CHEMISTRY
Tianzhou 6 burns up safely reentering Earth

Yan Hongsen's future dreams as 'Rocket Boy'

China's Tianzhou 7 docks with Tiangong Space Station

China Prepares to Launch Tianzhou 7 Cargo Ship to Tiangong Space Station

STELLAR CHEMISTRY
Eutelsat OneWeb and Paratus South Africa join forces to enhance satellite connectivity in South Africa

Booz Allen Ventures Invests in Albedo's groundbreaking VLEO satellite technology

AST SpaceMobile Launches $100 Million Stock Offering Amid Strategic Tech Investments

Small solar sails could be the next 'giant leap' for interplanetary space exploration

STELLAR CHEMISTRY
Renesas Electronics plays role in Japan's lunar landing mission

Redwire joins forces with Blue Origin on Blue Ring Space Mobility Platform

NASA's Transition to Commercial Space Networks: A Leap in Wideband Communication

LeoLabs partners with NOAA's OSC to develop advanced space traffic coordination system

STELLAR CHEMISTRY
Shallow soda lakes show promise as cradles of life on Earth

Key moment in the evolution of life on Earth captured in fossils

ASU talk will examine ethical questions surrounding life in space

Study uncovers potential origins of life in ancient hot springs

STELLAR CHEMISTRY
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.