24/7 Space News
STELLAR CHEMISTRY
The life and times of dust
Irregular galaxy NGC 6822 as observed by the NIRCam and MIRI instruments onboard the Webb Telescope.
The life and times of dust
by Staff Writers
Paris, France (SPX) Aug 01, 2023

This image shows the irregular galaxy NGC 6822, which was observed by the Near-InfraRed Camera (NIRCam) and Mid-InfraRed Instrument (MIRI) mounted on the NASA/ESA/CSA James Webb Space Telescope. As their names suggest, NIRCam and MIRI probe different parts of the electromagnetic spectrum. This allows the instruments to observe different components of the same galaxy, with MIRI especially sensitive to its gas-rich regions (the yellow swirls in this image) and NIRCam suitable for observing its densely packed field of stars.

NGC 6822 lies about 1.5 million light-years away, and is the Milky Way's nearest galactic neighbour that is not one of its satellites. It has a very low metallicity, meaning that it contains very low proportions of elements that are not hydrogen and helium.

Metallicity is an absolutely key concept in astronomy, in part because elements other than hydrogen and helium are largely produced by stars over their lifetimes. Therefore, in the very early Universe (before the first generation of stars had been born, lived and died) everything had very low metallicity.

This makes contemporary low-metallicity objects (like NGC 6822) objects of interest for understanding how processes such as the evolution of stars and the life cycle of interstellar dust likely occurred in the early Universe. This was the motivation for these observations of NGC 6822 with Webb: to better understand how stars form and how dust evolves in low-metallicity environments.

The study of NGC 6822 has an interesting history that long predates modern investigations with Webb. It was first discovered by E. E. Barnard, who presented his discovery in a very brief paper in 1884 in The Sidereal Messenger: a short-lived but important American monthly astronomical journal that was published between 1882 and 1891. As with many astronomical objects that appeared diffuse with telescopes of the time, NGC 6822 was miscategorised as an "exceedingly faint nebula".

Over the next few years, a series of confusions arose around NGC 6822 over its apparent size, brightness, and even what kind of object it was, because astronomers at the time did not properly account for how different the same object might look with different telescopes. Edwin Hubble, namesake of the NASA/ESA Hubble Space telescope, went on to study NGC 6822 in depth and published a far more detailed paper of his own in 1925.

This work was exceptionally important for humanity's evolving understanding of the Universe, because, in Hubble's own words: "N.G.C. 6822, [was] the first object definitely assigned to a region outside the galactic system".

This paper contributed to solving the debate that was raging amongst astronomers about the extent of the Universe at the time by demonstrating that there were astronomical objects that lay beyond the Milky Way. The study of this galaxy was notably continued by Susan Keyser, who was the first woman to receive a PhD in astronomy from Caltech. Her 1966 thesis remained the most thorough investigation of this galaxy until the 2000s. Now, the study of this key local galaxy is being continued by Webb.

Related Links
Hubble at ESA
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Webb Snaps Highly Detailed Infrared Image of Actively Forming Stars
Baltimore MD (SPX) Jul 27, 2023
Young stars are rambunctious! NASA's James Webb Space Telescope has captured the "antics" of a pair of actively forming young stars, known as Herbig-Haro 46/47, in high-resolution near-infrared light. To find them, trace the bright pink and red diffraction spikes until you hit the center: The stars are within the orange-white splotch. They are buried deeply in a disk of gas and dust that feeds their growth as they continue to gain mass. The disk is not visible, but its shadow can be seen in the two dark ... read more

STELLAR CHEMISTRY
Advanced Space selected for two NASA SBIR Phase I Awards

NASA announces crew for 2024 ISS rotation mission

NASA and Axiom Space join forces for fourth private mission in 2024

NASA back in touch with Voyager 2 after 'interstellar shout'

STELLAR CHEMISTRY
Impulse Space secures $45M in Series A Funding Round

Boeing says troubled Starliner will be ready to fly crew by March

Hypersonics Capability Center: Northrop Grumman's next step beyond Mach 5

Rocket Lab inks new deal to launch HASTE mission from Virginia

STELLAR CHEMISTRY
Organic molecules in Martian crater help to reconstruct planet's history

InSight study finds Mars is spinning faster

Ingenuity flies again after unscheduled landing

Daily records of atmospheric temperature with Perseverance

STELLAR CHEMISTRY
China to launch "Innovation X Scientific Flight" program, applications open worldwide

Scientists reveal blueprint of China's lunar water-ice probe mission

Shenzhou 15 crew share memorable moments from Tiangong Station mission

China's Space Station Opens Doors to Global Scientific Community

STELLAR CHEMISTRY
Eutelsat and Thaicom to partner for new software-defined satellite over Asia

Astra Space optimizes workforce to support sustainable long-term business plan

AVS leverages optimum coverage of EUTELSAT 65 West A satellite over Brazil

Galaxy 37 Horizons-4 performing well after launch

STELLAR CHEMISTRY
Deep Space communications to get a laser boost

Solestial's Tech to Power Atomos's OTVs

Recycling parts for life on the Moon

Captain Kirk to the holodeck: Shatner beams in to remote meeting

STELLAR CHEMISTRY
Chemical contamination on International Space Station is out of this world

New exoplanet discovery builds better understanding of planet formation

Violent Atmosphere Gives Rare Look at Early Planetary Life

Using cosmic weather to study which worlds could support life

STELLAR CHEMISTRY
Looking for Light with New Horizons

James Webb Space Telescope sees Jupiter moons in a new light

NASA's Juno Is Getting Ever Closer to Jupiter's Moon Io

SwRI team identifies giant swirling waves at the edge of Jupiter's magnetosphere

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.