. | . |
The fingerprints of paddy rice in atmospheric methane concentration dynamics by Staff Writers Norman OK (SPX) Feb 04, 2020
A University of Oklahoma-led study shows that paddy rice (both area and plant growth) is significantly related to the spatial-temporal dynamics of atmospheric methane concentration in monsoon Asia, where 87% of paddy rice fields are situated in the world. Methane is one of the major greenhouse gases. It has a lifetime of 12.4 years and its global warming potential is approximately 86 times higher than carbon dioxide over a 20-year period. "Rice paddy is a large source of methane emission; however, it has been a challenging task to attribute relative role of rice paddy in the spatial distribution, seasonal dynamics and interannual variation of atmospheric methane concentration as measured by spaceborne sensors," said Xiangming Xiao, a member of the Earth Observation and Modeling Facility at OU and a professor in the Department of Microbiology and Plant Biology who coordinated this interdisciplinary study. Over the past few years, researchers at OU developed annual paddy rice maps at 500-meter spatial resolution and quantified the spatial-temporal changes in rice paddy area in monsoon Asia during 2000-2015. By combining the annual paddy rice maps, rice plant growth data and atmospheric methane concentration (XCH4) data, researchers found strong spatial consistencies between rice paddy area and XCH4 and seasonal consistencies between rice plant growth and XCH4, including both single rice and double rice fields. Results from the study also yielded a decreasing trend in rice paddy area in monsoon Asia since 2007. This suggests that the change in rice paddy area could not be one of the major drivers for the renewed XCH4 growth since 2007. The findings of this study demonstrate the importance of satellite-based paddy rice datasets in understanding the spatial-temporal dynamics of XCH4 in monsoon Asia. These annual maps of paddy rice are the first of their kind and could be used to further improve simulations of biogeochemical models that estimate methane emission from paddy rice fields, which are critically needed for analysis of spaceborne XCH4 data and simulations of atmospheric chemistry and transport models.
Research Report: "Fingerprint of rice paddies in spatial-temporal dynamics of atmospheric methane concentration in monsoon Asia"
Clouds as a factor influencing the climate Hamburg, Germany (SPX) Jan 20, 2020 The almost six-week-long EUREC4A (Elucidating the role of clouds-circulation coupling in climate) field campaign will begin on 20 January 2020. The aim is to test theories about the role of clouds and convection in climate change by conducting comprehensive measurements in the atmosphere and ocean. In addition, EUREC4A will examine how fine-scale features in the ocean - eddies and fronts - interact with the atmosphere. Five research aircraft and four research ships will be deployed to the east and ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |