![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Atlanta GA (SPX) Mar 29, 2017
Experiments led by researchers at the Georgia Institute of Technology suggest the particles that cover the surface of Saturn's largest moon, Titan, are "electrically charged." When the wind blows hard enough (approximately 15 mph), Titan's non-silicate granules get kicked up and start to hop in a motion referred to as saltation. As they collide, they become frictionally charged, like a balloon rubbing against your hair, and clump together in a way not observed for sand dune grains on Earth - they become resistant to further motion. They maintain that charge for days or months at a time and attach to other hydrocarbon substances, much like packing peanuts used in shipping boxes here on Earth. "If you grabbed piles of grains and built a sand castle on Titan, it would perhaps stay together for weeks due to their electrostatic properties," said Josef Dufek, the Georgia Tech professor who co-led the study. "Any spacecraft that lands in regions of granular material on Titan is going to have a tough time staying clean. Think of putting a cat in a box of packing peanuts." The electrification findings may help explain an odd phenomenon. Prevailing winds on Titan blow from east to west across the moon's surface, but sandy dunes nearly 300 feet tall seem to form in the opposite direction. "These electrostatic forces increase frictional thresholds," said Josh Mendez Harper, a Georgia Tech geophysics and electrical engineering doctoral student who is the paper's lead author. "This makes the grains so sticky and cohesive that only heavy winds can move them. The prevailing winds aren't strong enough to shape the dunes." To test particle flow under Titan-like conditions, the researchers built a small experiment in a modified pressure vessel in their Georgia Tech lab. They inserted grains of naphthalene and biphenyl - two toxic, carbon and hydrogen bearing compounds believed to exist on Titan's surface - into a small cylinder. Then they rotated the tube for 20 minutes in a dry, pure nitrogen environment (Titan's atmosphere is composed of 98 percent nitrogen). Afterwards, they measured the electric properties of each grain as it tumbled out of the tube. "All of the particles charged well, and about 2 to 5 percent didn't come out of the tumbler," said Mendez Harper. "They clung to the inside and stuck together. When we did the same experiment with sand and volcanic ash using Earth-like conditions, all of it came out. Nothing stuck." Earth sand does pick up electrical charge when it's moved, but the charges are smaller and dissipate quickly. That's one reason why you need water to keep sand together when building a sand castle. Not so with Titan. "These non-silicate, granular materials can hold their electrostatic charges for days, weeks or months at a time under low-gravity conditions," said George McDonald, a graduate student in the School of Earth and Atmospheric Sciences who also co-authored the paper. Visually, Titan is the object in the solar system most like Earth. Data gathered from multiple flybys by Cassini since 2005 have revealed large liquid lakes at the poles, as well as mountains, rivers and potentially volcanoes. However, instead of water-filled oceans and seas, they're composed of methane and ethane and are replenished by precipitation from hydrocarbon-filled clouds. Titan's surface pressure is a bit higher than our planet - standing on the moon would feel similar to standing 15 feet underwater here on Earth. "Titan's extreme physical environment requires scientists to think differently about what we've learned of Earth's granular dynamics," said Dufek. "Landforms are influenced by forces that aren't intuitive to us because those forces aren't so important on Earth. Titan is a strange, electrostatically sticky world." The findings have just been published in the journal Nature Geoscience. Researchers from the Jet Propulsion Lab, University of Tennessee-Knoxville and Cornell University also co-authored the paper, which is titled "Electrification of Sand on Titan and its Influence on Sediment Transport."
![]() Washington (UPI) Mar 27, 2017 New research suggests the sand grains on Titan, Saturn's largest moon, behave similar to the packing peanuts used in shipping boxes. Lab experiments suggest the granules become electrically charged and clump together, resisting motion as they attach themselves to other hydrocarbons. The sand grains become charged as they're excited by strong winds and hop along the surface - a p ... read more Related Links Georgia Institute of Technology Explore The Ring World of Saturn and her moons Jupiter and its Moons The million outer planets of a star called Sol News Flash at Mercury
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |