![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Plainsboro NJ (SPX) Dec 04, 2017
Is there life beyond Earth in the cosmos? Astronomers looking for signs have found that our Milky Way galaxy teems with exoplanets, some with conditions that could be right for extraterrestrial life. Such worlds orbit stars in so-called "habitable zones," regions where planets could hold liquid water that is necessary for life as we know it. However, the question of habitability is highly complex. Researchers led by space physicist Chuanfei Dong of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University have recently raised doubts about water on - and thus potential habitability of - frequently cited exoplanets that orbit red dwarfs, the most common stars in the Milky Way. In two papers in The Astrophysical Journal Letters, the scientists develop models showing that the stellar wind - the constant outpouring of charged particles that sweep out into space - could severely deplete the atmosphere of such planets over hundreds of millions of years, rendering them unable to host surface-based life as we know it. "Traditional definition and climate models of the habitable zone consider only the surface temperature," Dong said. "But the stellar wind can significantly contribute to the long-term erosion and atmospheric loss of many exoplanets, so the climate models tell only part of the story." To broaden the picture, the first paper looks at the timescale of atmospheric retention on Proxima Centauri b (PCb), which orbits the nearest star to our solar system, some 4 light-years away. The second paper questions how long oceans could survive on "water worlds" - planets thought to have seas that could be hundreds of miles deep.
Two-Fold Effect This process could cause severe atmospheric losses that would prevent the water that evaporates from exoplanets from raining back onto them, leaving the surface of the planet to dry up. On Proxima Centauri b, the model indicates that high stellar wind pressure would cause the atmosphere to escape and prevent atmosphere from lasting long enough to give rise to surface-based life as we know it. "The evolution of life takes billions of years," Dong noted. "Our results indicate that PCb and similar exoplanets are generally not capable of supporting an atmosphere over sufficiently long timescales when the stellar wind pressure is high." "It is only if the pressure is sufficiently low," he continues, "and if the exoplanet has a reasonably strong magnetic shield like that of the Earth's magnetosphere, that the exoplanet can retain an atmosphere and has the potential for habitability."
Evolution of Habitable Zone "In addition, such close-in planets could also be tidally locked like our moon, with one side always exposed to the star. The resultant weak global magnetic field and the constant bombardment of stellar wind would serve to intensify losses of atmosphere on the star-facing side." Turning to water worlds, the researchers explored three different conditions for the stellar wind. These ranged from: * Winds that strike the Earth's magnetosphere today. * Ancient stellar winds flowing from young, Sun-like stars that were just a toddler-like 0.6 billion years old compared with the 4.6 billion year age of the Sun. * The impact on exoplanets of a massive stellar storm like the Carrington event, which knocked out telegraph service and produced auroras around the world in 1859. The simulations illustrated that ancient stellar wind could cause the rate of atmospheric escape to be far greater than losses produced by the current solar wind that reaches the magnetosphere of Earth. Moreover, the rate of loss for Carrington-type events, which are thought to occur frequently in young Sun-like stars, was found to be greater still. "Our analysis suggests that such space weather events may prove to be a key driver of atmospheric losses for exoplanets orbiting an active young Sun-like star," the authors write.
High Probability of Dried Up Oceans Authors of the PCb paper note that predicting the habitability of planets located light-years from Earth is of course filled with uncertainties. Future missions like the James Webb Space Telescope, which NASA will launch in 2019 to peer into the early history of the universe, will therefore "be essential for getting more information on stellar winds and exoplanet atmospheres," the authors say, "thereby paving the way for more accurate estimations of stellar-wind induced atmospheric losses." Scientists spot potentially habitable worlds with regularity. Recently, a newly discovered Earth-sized planet orbiting Ross 128, a red dwarf star that is smaller and cooler than the Sun located some 11 light-years from Earth, was cited as a water candidate. Scientists noted that the star appears to be quiescent and well-behaved, not throwing off flares and eruptions that could undo conditions favorable to life.
"Is Proxima Centauri b Habitable? A Study of Atmospheric Loss," Chuanfei Dong et al., 2017 Mar. 10, Astrophysical Journal Letters
"The Dehydration of Water Worlds via Atmospheric Losses," Chuanfei Dong et al., 2017 Sep. 20, Astrophysical Journal Letters
![]() Honolulu HI (SPX) Nov 30, 2017 Since astronomers first measured the size of an extrasolar planet 17 years ago, they have struggled to answer the question: how did the largest planets get to be so large? Thanks to the recent discovery of twin planets by a University of Hawaii Institute for Astronomy team led by graduate student Samuel Grunblatt, we are getting closer to an answer. Gas giant planets are primarily made out ... read more Related Links Princeton Plasma Physics Laboratory Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |