. | . |
The Riemann conjecture unveiled by physics by Staff Writers Trieste, Italy (SPX) Nov 24, 2021
A mystery of mathematics that has remained unsolved for more than 150 years can be unraveled thanks to a completely unexpected approach coming from statistical physics. This is the important conclusion of Giuseppe Mussardo, professor of Theoretical Physics at SISSA, and Andre Leclair of Cornell University (USA) reported in an article just published in the Journal of Statistical Mechanics (JSTAT). T he two scientists have shown that not only one can arrive at the solution to one of the most famous problems in mathematics, the Riemann conjecture, but that it is the physics of chaotic motions and the probability laws that regulate them that provide the elegant key to understand this great mathematical enigma. The research behind the article just published, lasted three years and the final part of it, the authors said, was "a real tour de force in the data analysis of an incredibly large set of prime numbers, the basic constituents of arithmetic, i.e. the real atoms of mathematics ". Infinite zeros along a vertical line: an enigma that has lasted since 1859 The fact that mathematics provides physics with the right language to formulate the laws of the Nature is in the logic of things. The prospect that physics provides the key to understanding a genuine mystery of mathematics is, conversely, a rather unusual and extraordinary fact. This is the case of the Riemann conjecture, one of the most famous problems in mathematics. In 1859 the German mathematician Bernhard Riemann presented at the Berlin Academy of Sciences an article destined to change the history of mathematics. It concerned the mystery of prime numbers and the possibility of predicting their elusive distribution with astonishing accuracy. "At the heart of Riemann's argument there was a conjecture, which he was not able to prove, about the location of an infinite number of zeros in the complex plane of a particular function, known as the Riemann function. These zeros seem to magically align themselves along a vertical line with an abscissa exactly equal to 0.5 and until now no one has ever been able to understand the reason for such an incredible regularity", explains Giuseppe Mussardo. In a recent article published in the Journal of Statistical Mechanics (JSTAT), Giuseppe Mussardo and Andre Leclair showed that there is instead an extremely elegant explanation of the alignment of zeros along the 0.5 axis of the Riemann function (as well as of infinite similar functions, the so-called Dirichlet functions), ultimately due to a totally unexpected reason: the presence of a chaotic motion and the laws of probability that rule it. As a matter of fact, Mussardo and Leclair proved the existence of a Brownian motion, hidden behind all these infinite functions.
The Brownian motion behind the Riemann conjecture "Our hypothesis on the Brownian nature of the Riemann conjecture, supported by a series of probabilistic results that we proved in Number Theory, has been accompanied by a massive and extremely precise statistical analysis done along the infinite sequence of prime numbers, a real tour de force which kept us busy for about three years ", explains Giuseppe Mussardo. The fact that the explanation of Riemann's conjecture comes from physics, i.e. from statistical mechanics and the surprising connections of this field with a genuinely mathematical topic such as number theory, reveals at once the great unity of scientific knowledge and, at the same time, increases our astonishment of facing such a profound fact ", is the final comment of the two authors.
Research Report: "Randomness of Mobius coefficients and Brownian motion: growth of the Mertens function and the Riemann hypothesis"
Electron family creates previously unknown state of matter Dresden, Germany (SPX) Nov 08, 2021 Dissipationless electric energy transport-also known as superconductivity-is seen as a beacon of hope for the energy industry. Since its discovery more than 100 years ago, scientists around the world have been investigating this well-known quantum phenomenon, which, however, requires the electrons in metals to be cooled to ultra-low temperatures. A team of scientists from the Cluster of Excellence ct.qmat-Complexity and Topology in Quantum Matter at the Universities of Dresden and Wurzburg has now ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |