|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Vienna, Germany (SPX) Apr 08, 2011
The quantum physics of tailor-made organic macro-molecules - For the first time - as presented in Nature Communications - the quantum behaviour of molecules consisting of more than 400 atoms was demonstrated by quantum physicists based at the University of Vienna in collaboration with chemists from Basel and Delaware. The international and interdisciplinary team of scientists thus sets a new record in the verification of the quantum properties of nanoparticles. In addition, an important aspect of the famous thought experiment known as 'Schroedinger's cat' is probed. However, due to the particular shape of the chosen molecules the reported experiment could be more fittingly called 'molecular octopus'.
'Schroedinger's cat': simultaneously dead and alive? This experiment has not been realized with actual cats for good reasons. Nevertheless, the successful experiments by Gerlich et al. show that it is possible to reproduce important aspects of this thought experiment with large organic molecules.
'Superposition' demonstrated for larger and larger molecules Markus Arndt and his team at the University of Vienna tackle the question, up to which degree of complexity the amazing laws of quantum physics still apply. To this end, they investigate the quantum behaviour of molecules of increasing size, in particular their superposition at various positions in an interferometer. The high instability of most organic complexes, however, poses a major challenge in the process.
Tailor-made molecules solve the problem of instability
A new record
Related Links Universitat Wien Understanding Time and Space
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |