. 24/7 Space News .
STELLAR CHEMISTRY
The Milky Way's Ancient Heart
by Staff Writers
Santiago, Chile (SPX) Oct 13, 2016


This image, captured with the VISTA infrared survey telescope, as part of the Variables in the Via Lactea (VVV) ESO public survey, shows the central part of the Milky Way. While normally hidden behind obscuring dust, the infrared capabilities of VISTA allow to study the stars close to the galactic centre. Within this field of view astronomers detected several ancient stars, of a type known as RR Lyrae. As RR Lyrae stars typically reside in ancient stellar populations over 10 billion years old, this discovery suggests that the bulging centre of the Milky Way likely grew through the merging of primordial star clusters. Image courtesy ESO/VVV Survey/D. Minniti. For a larger version of this image please go here.

Ancient stars, of a type known as RR Lyrae, have been discovered in the centre of the Milky Way for the first time, using ESO's infrared VISTA telescope. RR Lyrae stars typically reside in ancient stellar populations over 10 billion years old.

Their discovery suggests that the bulging centre of the Milky Way likely grew through the merging of primordial star clusters. These stars may even be the remains of the most massive and oldest surviving star cluster of the entire Milky Way.

A team led by Dante Minniti (Universidad Andres Bello, Santiago, Chile) and Rodrigo Contreras Ramos (Instituto Milenio de Astrofisica, Santiago, Chile) used observations from the VISTA infrared survey telescope, as part of the Variables in the Via Lactea (VVV) ESO public survey, to carefully search the central part of the Milky Way.

By observing infrared light, which is less affected by cosmic dust than visible light, and exploiting the excellent conditions at ESO's Paranal Observatory, the team was able to get a clearer view of this region than ever before. They found a dozen ancient RR Lyrae stars at the heart of the Milky Way that were previously unknown.

Our Milky Way has a densely populated centre - a feature common to many galaxies, but unique in that it is close enough to study in depth. This discovery of RR Lyrae stars provides compelling evidence that helps astronomers decide between two main competing theories for how nuclear bulges form [1].

RR Lyrae stars are typically found in dense globular clusters. They are variable stars, and the brightness of each RR Lyrae star fluctuates regularly. By observing the length of each cycle of brightening and dimming in an RR Lyrae, and also measuring the star's brightness, astronomers can calculate its distance [2].

Unfortunately, these excellent distance-indicator stars are frequently outshone by younger, brighter stars and in some regions they are hidden by dust.

Therefore, locating RR Lyrae stars right in the extremely crowded heart of the Milky Way was not possible until the public VVV survey was carried out using infrared light. Even so, the team described the task of locating the RR Lyrae stars in amongst the crowded throng of brighter stars as "daunting".

Their hard work was rewarded, however, with the identification of a dozen RR Lyrae stars. Their discovery indicate that remnants of ancient globular clusters are scattered within the centre of the Milky Way's bulge.

Rodrigo Contreras Ramos elaborates: "This discovery of RR Lyrae Stars in the centre of the Milky Way has important implications for the formation of galactic nuclei. The evidence supports the scenario in which the nuclear bulge was originally made out of a few globular clusters that merged."

The theory that galactic nuclear bulges form through the merging of globular clusters is contested by the competing hypothesis that these bulges are actually due to the rapid accretion of gas.

The unearthing of these RR Lyrae stars - almost always found in globular clusters - is very strong evidence that part of the Milky Way's nuclear bulge did in fact form through merging. By extension, all other similar galactic bulges may have formed the same way.

Not only are these stars powerful evidence for an important theory of galactic evolution, they are also likely to be over 10 billion years old - the dim, but dogged survivors of perhaps the oldest and most massive star cluster within the Milky Way.

Notes

[1] The nuclear stellar bulge is the compact component in the innermost regions of the Milky Way (and other galaxies) extending to a size of about 400 light-years.

[2] RR Lyrae stars, like some other regular variables such as Cepheids, show a simple relationship between how quickly they change in brightness and how luminous they are. Longer periods mean brighter stars. This period-luminosity relationship can be used to deduce the distance of a star from its period of variation and its apparent brightness.

This research was presented in a paper published in The Astrophysical Journal Letters.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Variables in the Via Lactea (VVV)
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Astronomers discover dizzying spin of the Milky Way Halo
Ann Arbor MI (SPX) Sep 28, 2016
Astronomers at the University of Michigan's College of Literature, Science, and the Arts (LSA) discovered for the first time that the hot gas in the halo of the Milky Way galaxy is spinning in the same direction and at comparable speed as the galaxy's disk, which contains our stars, planets, gas, and dust. This new knowledge sheds light on how individual atoms have assembled into stars, planets, ... read more


STELLAR CHEMISTRY
Small Impacts Are Reworking Lunar Soil Faster Than Scientists Thought

Hunter's Supermoon to light up Saturday night sky

A facelift for the Moon every 81,000 years

Exploration Team Shoots for the Moon with Water-Propelled Satellite

STELLAR CHEMISTRY
Buried glaciers on Mars

Europe heads for Mars in search of life

How this Martian moon became the 'Death Star'

How Mars' moon Phobos came to look like the Death Star

STELLAR CHEMISTRY
Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Growing Interest: Students Plant Seeds to Help NASA Farm in Space

STELLAR CHEMISTRY
China getting ready for Shenzhou 11 launch

China may be only country with space station in 2024

Vice Premier calls for more contributions to China's space program

China to launch world's first X-ray pulsar navigation satellite

STELLAR CHEMISTRY
Hurricane Nicole delays next US cargo mission to space

Automating sample testing thanks to space

Orbital CRS-5 launching hot and bright science to space

Roscosmos Sets New Date for Soyuz MS-02 Launch to Orbital Station

STELLAR CHEMISTRY
Ariane 5 ready for first Galileo payload

More commercial spaceports going ahead

ILS Announces Two Missions under Its EUTELSAT Multi-Launch Agreement

Orbital ATK and Stratolaunch partner to offer competitive launch opportunities

STELLAR CHEMISTRY
Stars with Three Planet-Forming Discs of Gas

Proxima Centauri might be more sunlike than we thought

TESS will provide exoplanet targets for years to come

The death of a planet nursery?

STELLAR CHEMISTRY
Mars astronauts face chronic dementia risk from cosmic ray exposure

TES team evaluates new data collection method after age-related issue

Novel method creates important industrial chemicals simply, cheaply

Novel 3-in-1 'Rheo-Raman' microscope enables interconnected studies of soft materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.