. 24/7 Space News .
STELLAR CHEMISTRY
The Little Fox and the Giant Stars
by Staff Writers
Pasadena CA (JPL) Jun 01, 2016


Image courtesy ESA/Herschel/PACS, SPIRE/Hi-GAL Project. For a larger version of this image please go here.

New stars are the lifeblood of our galaxy, and there is enough material revealed by this Herschel infrared image to build stars for millions of years to come. Situated 8,000 light-years away in the constellation Vulpecula - Latin for "little fox" - the region in the image is known as Vulpecula OB1. It is a "stellar association" in which a batch of truly giant "OB" stars is being born. O and B stars are the largest stars that can form.

The giant stars at the heart of Vulpecula OB1 are some of the biggest in the galaxy. Containing dozens of times the mass of the sun, they have short lives, astronomically speaking, because they burn their fuel so quickly.

At an estimated age of 2 million years, they are already well through their lifespans. When their fuel runs out, they will collapse and explode as supernovas. The shock this will send through the surrounding cloud will trigger the birth of even more stars, and the cycle will begin again.

O stars are at least 16 times more massive than the sun, and could be well over 100 times as massive. They are anywhere from 30,000 to 1 million times brighter than the sun, but they only live up to a few million years before exploding. B-stars are between two and 16 times as massive as the sun. They can range from 25 to 30,000 times brighter than the sun.

OB associations are regions with collections of O and B stars. Since OB stars have such short lives, finding them in large numbers indicates the region must be a strong site of ongoing star formation, which will include many more smaller stars that will survive far longer.

The vast quantities of ultraviolet light and other radiation emitted by these stars is compressing the surrounding cloud, causing nearby regions of dust and gas to begin the collapse into more new stars. In time, this process will "eat" its way through the cloud, transforming some of the raw material into shining new stars.

The image was obtained as part of Herschel's Hi-GAL key-project. This used the infrared space observatory's instruments to image the entire galactic plane in five different infrared wavelengths.

These wavelengths reveal cold material, most of it between -220C and -260C. None of it can be seen in ordinary optical wavelengths, but this infrared view shows astronomers a surprising amount of structure in the cloud's interior.

The surprise is that the Hi-GAL survey has revealed a spider's web of filaments that stretches across the star-forming regions of our galaxy. Part of this vast network can be seen in this image as a filigree of red and orange threads.

In visual wavelengths, the OB association is linked to a star cluster catalogued as NGC 6823. It was discovered by William Herschel in 1785 and contains 50 to 100 stars. A nebula emitting visible light, catalogued as NGC 6820, is also part of this multi-faceted star-forming region.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Herschel at Caltech
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
A Young Mammoth Cluster of Galaxies Sighted in the Early Universe
Tucson AZ (SPX) May 26, 2016
Astronomers have uncovered evidence for a vast collection of young galaxies 12 billion light years away. The newly discovered "proto-cluster" of galaxies, observed when the universe was only 1.7 billion years old (12% of its present age), is one of the most massive structures known at that distance. The discovery, made using telescopes at Kitt Peak National Observatory in Arizona and the W. M. K ... read more


STELLAR CHEMISTRY
A new, water-logged history of the Moon

Russian Firm Develops Project of Reusable Spacecraft for Lunar Missions

SwRI scientists discover fresh lunar craters

NASA research gives new insights into how the Moon got inked

STELLAR CHEMISTRY
Red and Golden Planets at Opposition

Mars makes closest approach to Earth in 11 years

SwRI scientists discover evidence of ice age at Martian north pole

Opportunity investigating soil exposed by rover wheel

STELLAR CHEMISTRY
International Partners Provide Science Satellites for first SLS mission

India Presses Ahead With Space Ambitions

Fun LoL to Teach Machines How to Learn More Efficiently

'Metabolomics: You Are What You Eat' video

STELLAR CHEMISTRY
Chine's satellite industry eyes global satellite market

Bolivia takes over operations of Chinese-built satellite

NASA Chief: Congress Should Revise US-China Space Cooperation Law

China launches new satellite for civilian hi-res mapping

STELLAR CHEMISTRY
BEAM Leak Checks Before Crew Enters Next Week

HERA Mission 10 Crew to "Splashdown" on Wednesday

One Carbon Metabolism on the Space Station

Zuckerberg streams live chat with men in space

STELLAR CHEMISTRY
United Launch Alliance gets $138 million Atlas V contract

EchoStar XVIII and BRIsat are installed on Arianespace's Ariane 5

SpaceX makes fourth successful rocket landing

Arianespace to supply payload dispenser systems for OneWeb constellation

STELLAR CHEMISTRY
Astronomers find giant planet around very young star

Planet 1,200 Light-Years Away Is Good Prospect for a Habitable World

Kepler-223 System Offers Clues to Planetary Migration

Star Has Four Mini-Neptunes Orbiting in Lock Step

STELLAR CHEMISTRY
Compound switches between liquid and solid states when exposed to light or heat

Multifunction Phase Array Radar (MPAR)

Schafer Corp launches new venture in Commercial Space Situational Awareness

Believe the hype? How virtual reality could change your life









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.