. | . |
Testing Einstein: Is Dark Energy Constant
Boston MA (SPX) Oct 16, 2007 Nearly a decade ago, astronomers discovered the surprising existence of dark energy-a mysterious force that pushes galaxies apart and accelerates the expansion of the universe. Also known as the energy density of the vacuum, dark energy is a property of space itself. Scientists have many questions about the nature of dark energy. One question that soon may be answered: Is the energy density of the vacuum constant over cosmic time? Theorists Stuart B. Wyithe (University of Melbourne) and Avi Loeb (Harvard-Smithsonian Center for Astrophysics) suggest answering that question by studying the distribution of distant hydrogen clumps, which will yield clues to the history of dark energy. "The simplest expectation is that the energy density of the vacuum was steady over time-a 'cosmological constant'-but we need to check it out. We might be surprised by the answer," said Loeb. Dark energy made its first appearance in Einstein's General Theory of Relativity. Einstein believed that the universe was static so he inserted a constant, repulsive force into his equations to counteract the inexorable pull of gravity on all the galaxies. When Edwin Hubble found that the universe is expanding, Einstein threw out the cosmological constant and is rumored to have called it his "biggest blunder." In 1998, two teams of astronomers discovered that the universe is speeding up, not slowing down under the pull of gravity. They resurrected Einstein's cosmological constant in the form of dark energy. While dark energy clearly exists and its effects are visible to astronomers, no one knows what causes it or whether it is truly constant over time. "The origin of dark energy is the biggest unsolved problem in astrophysics," said Wyithe.
Investigating Dark Energy Wyithe and Loeb propose studying the radio emission from neutral hydrogen, whose wavelength is stretched from its starting value of 21 centimeters by the expansion of the universe (a process called redshifting). After the universe was re-ionized by the first galaxies (sometime in the first billion years), a small fraction of hydrogen remained neutral, surviving in dense pockets. Astronomers had not realized before this work that 21-cm signals from the leftover hydrogen might be detectable. Wyithe and Loeb showed that, in fact, upcoming observatories will be capable of detecting 21-cm signals from the distant, young universe, even after it gets mostly ionized. Moreover, while the signal strength decreases after re-ionization, the noise also decreases. In principle, the 21-cm signal from neutral hydrogen can be measured from the present epoch all the way up to a redshift of z=15, when the universe was only 200 million years old. "There is no other viable technique to study dark energy at high redshifts," stated Loeb.
Universal Sound Waves Neutral hydrogen gas should show the same distribution patterns as galaxies due to primordial acoustic oscillations. By studying the large-scale distribution of hydrogen in the early universe, astronomers can learn how dark energy influenced the growth of structure in the crucial first few billion years. Theoretically, instruments now under construction such as the Murchison (formerly Mileura) Wide-field Array (MWA) and its future extensions could detect 21-cm signals from hydrogen in the first 1 to 4 billion years of the universe's history, corresponding to redshift factors of 1.5 to 6. "The broad range of redshifts we can reach is important because we can pick up the signal regardless of when the universe was re-ionized," explained Wyithe. Community Email This Article Comment On This Article Related Links Harvard-Smithsonian Center for Astrophysics Stellar Chemistry, The Universe And All Within It
Major Step Toward Knowing Origin Of Cosmic Rays Greenbelt MD (SPX) Oct 10, 2007 Recent observations from NASA and Japanese X-ray observatories have helped clarify one of the long-standing mysteries in astronomy -- the origin of cosmic rays. Outer space is a vast shooting gallery of cosmic rays. Discovered in 1912, cosmic rays are not actually rays at all; they are subatomic particles and ions (such as protons and electrons) that zip through space in all directions at near-light speed, with energies tens of thousands of times greater than particles produced in Earth's largest particle accelerators. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |