. 24/7 Space News .
STELLAR CHEMISTRY
Temperatures of 800 billion degrees in the cosmic kitchen
by Staff Writers
Munich, Germany (SPX) Aug 23, 2019

HADES detector with digital camera that records light patterns originating from virtual photons. The detector is suitable for investigating the properties of atomic nuclei under high pressure, just as it is produced in a supernova. This allows conclusions to be drawn as to how mass is formed in the first place.

When two neutron stars collide, the matter at their core enters extreme states. An international research team has now studied the properties of matter compressed in such collisions. The HADES long-term experiment, involving more than 110 scientists, has been investigating forms of cosmic matter since 1994.

With the investigation of electromagnetic radiation arising when stars collide, the team has now focused attention on the hot, dense interaction zone between two merging neutron stars.

Collisions between stars cannot be directly observed - not least of all because of their extreme rarity. According to estimates, none has ever happened in our galaxy, the Milky Way. The densities and temperatures in merging processes of neutron stars are similar to those occurring in heavy ion collisions, however. This enabled the HADES team to simulate the conditions in merging stars at the microscopic level in the heavy ion accelerator at the Helmholtzzentrum fur Schwerionenforschung (GSI) in Darmstadt.

As in a neutron star collision, when two heavy ions are slammed together at close to the speed of light, electromagnetic radiation is produced. It takes the form of virtual photons that turn back into real particles after a very short time.

However, the virtual photons occur very rarely in experiments using heavy ions. "We had to record and analyze about 3 billion collisions to finally reconstruct 20,000 measurable virtual photons," says Dr. Jurgen Friese, the former spokesman of the HADES collaboration and researcher at Laura Fabbietti's Professorship on Dense and Strange Hadronic Matter at TUM.

Photon camera shows collision zone
To detect the rare and transient virtual photons, researchers at TUM developed a special 1.5 square meter digital camera. This instrument records the Cherenkov effect: the name given to certain light patterns generated by decay products of the virtual photons.

"Unfortunately the light emitted by the virtual photons is extremely weak. So the trick in our experiment was to find the light patterns," says Friese. "They could never be seen with the naked eye. We therefore developed a pattern recognition technique in which a 30,000 pixel photo is rastered in a few microseconds using electronic masks. That method is complemented with neural networks and artificial intelligence."

Observing the material properties in the laboratory
The reconstruction of thermal radiation from compressed matter is a milestone in the understanding of cosmic forms of matter. It enabled the scientists to place the temperature of the new system resulting from the merger of stars at 800 billion degrees celsius. As a result, the HADES team was able to show that the merging processes under consideration are in fact the cosmic kitchens for the fusion of heavy nucleii.

Research paper


Related Links
Technical University of Munich (TUM)
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Scientists discover a new type of pulsating star
Santa Barbara CA (SPX) Aug 05, 2019
Scientists can tell a lot about a star by the light it gives off. The color, for example, reveals its surface temperature and the elements in and around it. Brightness correlates with a star's mass, and for many stars, brightness fluctuates, a bit like a flickering candle. A team of scientists led by UC Santa Barbara researcher Thomas Kupfer recently discovered a new class of these pulsators that vary in brightness every five minutes. Their results appeared in The Astrophysical Journal Letters. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
India not poor, has resources for space program says ISRO chief

Company Claims Orbital Hotel to Host 400 Space Tourists Will Be Operational By 2025

Europe Unlikely to Abandon Soyuz Once US Revives Space Shuttles - German Space Center

No-fly boys: new Russian space suit clashes with pee ritual

STELLAR CHEMISTRY
China's first medium-scale launcher with LOX LCH4 propellants ZQ-2 soliciting payloads worldwide

Arianespace will launch Ovzon-3 satellite

NASA prepares for green run testing, practices lifting SLS Core Stage

Russia Launches Rokot Space Rocket to Orbit Military Satellite

STELLAR CHEMISTRY
ESA Chief says discussed ExoMars 2020 launch with Roscosmos

NASA engineers attach Mars Helicopter to Mars 2020 rover

NASA Invites Students to Name Next Mars Rover

NASA's Mars Helicopter Attached to Mars 2020 Rover

STELLAR CHEMISTRY
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

STELLAR CHEMISTRY
Cutting-edge Chinese satellite malfunctions after launch

Private Chinese firms tapping international space market

ESA and GomSpace Luxembourg sign contract for continued constellation management development

New Iridium Certus transceiver for faster satellite data now in live testing

STELLAR CHEMISTRY
Russia says radioactive isotopes released by missile test blast

China's Tianhe-2 Supercomputer to Crunch Space Data From New Radio Telescope

Chipping away at how ice forms could keep windshields, power lines ice-free

In NASA Glenn's Virtual Reality Lab, Creative-Minded Employees Thrive

STELLAR CHEMISTRY
Exoplanets Can't Hide Their Secrets from Innovative New Instrument

Deep-sea sediments reveal solar system chaos: An advance in dating geologic archives

Hints of a volcanically active exomoon

Canadian astronomers determine Earth's fingerprint

STELLAR CHEMISTRY
Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.