24/7 Space News
SOLAR SCIENCE
Temperature of solar flares helps understand nature of solar plasma
File image of solar flare ejecting magnetic-loops as plasma explodes from the Sun's surface. SDO image.
Temperature of solar flares helps understand nature of solar plasma
by Staff Writers
Sao Paulo, Brazil (SPX) May 17, 2023

The Sun's rotation produces changes in its magnetic field, which flips completely every 11 years or so, triggering a phase of intense activity. Solar flares - huge eruptions from the surface of the Sun lasting minutes or hours - emit intense bursts of particles and high levels of electromagnetic radiation. The release of energy during solar flares heats the chromosphere, causing almost full ionization of the atomic hydrogen present in the region.

The chromosphere is a thin layer of plasma that lies at least 2,000 km above the Sun's visible surface (the photosphere) and below the corona (the Sun's upper atmosphere). The plasma is very dense, and the hydrogen recombines at a very high rate, resulting in a recurring process of ionization and hydrogen recombination that produces a characteristic type of radiation emission in the ultraviolet band known as the Lyman Continuum (LyC) in memory of American physicist Theodore Lyman IV (1874-1954).

Theoretical descriptions suggest the LyC's "color temperature" could be associated with the temperature of the plasma that produces the flare, and color temperature could therefore be used to determine plasma temperature during solar storms.

A new study has simulated emissions from dozens of different solar flares and confirmed the link between the LyC's color temperature and the plasma temperature in the region from which the flare erupts. It also confirms that a local thermodynamic equilibrium occurs in the region between the plasma and the photons in the LyC. An article on the study is published in The Astrophysical Journal. The study was supported by FAPESP.

The penultimate author of the article is Paulo Jose de Aguiar Simoes, a professor at Mackenzie Presbyterian University's School of Engineering (EE-UPM) in Sao Paulo state, Brazil. "We show that the LyC's intensity increases significantly during solar flares and that analysis of the Lyman spectrum really can be used for diagnosis of the plasma," said Simoes, who is also a researcher at the Mackenzie Radio Astronomy and Astrophysics Center (CRAAM).

The simulations corroborated an important result obtained at the Solar Dynamics Laboratory by Argentinian astronomer Marcos Machado showing that the color temperature, which in quiet periods is in the region of 9,000 Kelvin (K), rises to 12,000-16,000 K during flares. The article in which he reported this result and of which Simoes was also a co-author, was the last published by Machado. A world-renowned expert on the Sun, he died in 2018 while the article was being peer-reviewed.

Solar dynamics
Here it is worth recalling a little of what is known about the Sun's structure and dynamics. The huge amount of energy that provides Earth with light and heat is mainly generated by conversion of hydrogen into helium in a process of nuclear fusion that takes place deep inside the star. This vast region is not directly observable because light does not cross the Sun's "surface", which is actually the photosphere.

"We can observe the region above the surface directly. The first layer, which extends up to an altitude of about 500 km, is the photosphere, with a temperature of around 5,800 K. This is where we see sunspots, in places where the magnetic fields that emerge from the Sun inhibit convection and keep the plasma relatively cool, producing these darker areas we call sunspots," Simoes explained.

Above the photosphere, the chromosphere extends for some 2,000 km. "The temperature of this layer is higher, exceeding 10,000 K, and the plasma is less dense. Owing to these characteristics, the atomic hydrogen is partially ionized, keeping protons and electrons separate," he said.

In a thin transition layer at the top of the chromosphere, the temperature rises sharply to above 1 million K, and plasma density falls by many orders of magnitude. This sudden heating in the passage from chromosphere to corona is a counter-intuitive phenomenon; it would be reasonable to expect the temperature to fall as the distance from the source increases.

"We don't have an explanation yet. Various proposals have been presented by solar physicists, but none has been accepted without reservations by the community," Simoes said.

The corona extends toward the interplanetary medium, without a clear-cut transition region. The Sun's magnetic fields exert a strong influence on the corona, structuring the plasma, especially in active regions easily identified in ultraviolet images.

"In these solar storms, the energy accumulated in the coronal magnetic fields is abruptly released, heating the plasma and accelerating the particles. Electrons, which have less mass, can be accelerated to as much as 30% of the speed of light. Some of these particles, which travel along magnetic lines of force, are ejected into the interplanetary medium. Others go in the opposite direction, from corona to chromosphere, where they collide with the high-density plasma and transfer their energy to the medium. This surplus energy heats the local plasma, causing ionization of the atoms. The dynamics of ionization and recombination gives rise to the Lyman Continuum," Simoes said.

The spikes in solar activity occur roughly every 11 years. During periods of intense activity, the effects on the Earth are substantial, including more aurora borealis displays, radio communications blackouts, heightened effects of scintillation on GPS signals, and an increase in the drag on satellites, reducing their velocity and hence the altitude of their orbits. These phenomena and the physical properties of the near-Earth interplanetary medium are known as space weather.

"Besides the fundamental knowledge they provide, studies of the physics of solar flares also improve our ability to forecast space weather. These studies walk on two legs: direct observation, and simulations based on computational models. Observational data in the different bands of the electromagnetic spectrum enables us to understand better the evolution of solar flares and the physical properties of the plasma involved in these events. Computational models, such as those used in our study, serve to test hypotheses and verify interpretations of the observations since they give us access to quantities that can't be directly obtained from analysis of observational data," Simoes said.

Research Report:Formation of the Lyman Continuum during Solar Flares

Related Links
Sao Paulo Research Foundation
Solar Science News at SpaceDaily

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR SCIENCE
SwRI scientists get close-up views of energetic particle jets ejected from the Sun
San Antonio TX (SPX) May 16, 2023
Southwest Research Institute (SwRI) scientists observed the first close-ups of a source of energetic particles expelled from the Sun, viewing them from just half an astronomical unit (AU), or about 46.5 million miles. The high-resolution images of the solar event were provided by ESA's Solar Orbiter, a Sun-observing satellite launched in 2020. "In 2022, the Solar Orbiter detected six recurrent energetic ion injections. Particles emanated along the jets, a signature of magnetic reconnection involvi ... read more

SOLAR SCIENCE
Cosmonauts wrap up 5-hour ISS spacewalk

NASA harnesses US Navy spinning device to simulate spaceflight

Ax-2 crew carrying personal, cultural mementoes on launch to ISS

Research announcement for technology development leveraging ISS is open for concepts

SOLAR SCIENCE
Virgin Orbit receives more than 30 indications of interest under court approved bid procedures

For 191st time, SpaceX booster successfully returns after launch

Momentus signs launch package with SpaceX

Gilmour Space Technologies forges head as PM opens new rockets factory

SOLAR SCIENCE
Remotely waiting in Gale: Sols 3832-3833

Perseverance captures view of Mars' Belva Crater

Martian crust like heavy armour

What's so special about large grains on Mars

SOLAR SCIENCE
China's next space exploration to feature new faces

"Tianzhou Express" is online again, with five highlights

Tianzhou 6 docks with Tiangong space station

China's cargo craft Tianzhou 6 ready for launch

SOLAR SCIENCE
Arlula secures $2.2 million in seed funding to enable global space data access

UK leads Europe in race for space investment, new report finds

Sidus Space contracts with Leaf Space for additional ground station coverage

UAE partnerships boost commercial space opportunities

SOLAR SCIENCE
Momentus deploys Qosmosys satellite and on-orbit support of Caltech hosted payload

GPR announces Series A funding on back of customer traction

Origami heat shield: reusable for reentries

Safeguarding space infrastructure

SOLAR SCIENCE
Astronomers observe the first radiation belt seen outside of our solar system

NASA's Spitzer, TESS find potentially volcano-covered Earth-size world

Researchers uncover how primordial proteins formed on prebiotic earth

Bacteria survive on radioactive elements

SOLAR SCIENCE
Pioneer 11, launched 50 years ago, helped solve mysteries of the universe

NASA's Juno mission closing in on Io

NASA: Up to 4 of Uranus' moons could have water

New video series captures team working on NASA's Europa Clipper

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.