. | . |
Tel Aviv university researchers demonstrate optical backflow of light by Staff Writers Tel Aviv, Israel (SPX) Feb 07, 2020
Researchers at Tel Aviv University have for the first time demonstrated the backflow of optical light propagating forward. The phenomenon, theorized more than 50 years ago by quantum physicists, has never before been demonstrated successfully in any experiment - until now. "This 'backflow' phenomenon is quite delicate and requires exquisite control over the state of a particle, so its demonstration was hindered for half a century," explains Dr. Alon Bahabad of the Department of Physical Electronics at TAU's School of Electrical Engineering, who led the research for the study. "This phenomenon reveals an unintuitive behavior of a system comprised of waves, whether it's a particle in quantum mechanics or a beam of light. "Our demonstration could help scientists probe the atmosphere by emitting a laser beam and inducing a signal propagating backward toward the laser source from a given point in front of the laser source. It's also relevant for cases in which fine control of light fields is required in small volumes, such as optical microscopy, sensing and optical tweezers for moving small particles," Dr. Bahabad says. The study, published on January 16 in Optica, was conducted by Dr. Bahabad's graduate students Dr. Yaniv Eliezer, now at Yale University, and Thomas Zacharias. Light is similar to quantum particles in that both can be constructed from interfering waves. Such a construction, in which several waves are added together to produce a new wave, is known as a superposition. If a special superposition of waves, all propagating forward, is constructed, the overall wave can realize what's called "optical backflow." In their holography experiment, the scientists split and reassembled a laser beam in the form of light waves that propagated at positive angles with respect to an axis. The different light beams had to be constructed very carefully, with precise values for their strength and delay. Once the superposition was created, a small slit was set and moved perpendicularly to the beam to, in effect, measure the direction of the beam in different locations. The light escaping from the slit was revealed in most locations as moving at a positive angle. But in some locations, the light escaping the slit propagated at a negative angle, even though the light hitting the other side of the slit was comprised of a superposition of beams all propagating at a positive angle. "We used holography to create a clear manifestation of the backflow effect," adds Dr. Bahabad. "We realized at some point that we can utilize a previous study of ours, where we discovered the mathematical phenomenon known as suboscillation, to help us design a beam of light with backflow. "To conclude, if interfering waves, all going in one direction, are constructed in a special manner, and you were to measure the direction of propagation of the overall wave at specific locations and times, you just might find the wave going backward. This wave can describe a particle using quantum mechanics. This surprising behavior violates any intuition that we gained from our daily experience with the movement of macroscopic objects. Nevertheless, it still obeys the laws of nature."
Controlling light with light Boston MA (SPX) Feb 07, 2020 The future of computation is bright - literally. Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with researchers at McMaster University and University of Pittsburgh, have developed a new platform for all-optical computing, meaning computations done solely with beams of light. "Most computation right now uses hard materials such as metal wires, semiconductors and photodiodes to couple electronics to light," said Amos Meeks, a graduat ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |