Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Teaching matter waves new tricks: Making magnets with ultra cold atoms
by Staff Writers
Hamburg, Germany (SPX) Dec 08, 2013


A novel experiment at the University of Hamburg utilizes matter waves to understand magnets. Magnets are built of elementary magnets which can point North (red) and South (blue), as can be seen in this computer simulation. Credit: Center for Optical Quantum Technologies (ZOQ).

Magnets have fascinated mankind for millenia. From the Greek philosophers to scientists of the modern era, which saw the rise of quantum mechanics, magnets have been pondered and investigated. Nowadays, they are not only intriguing oddities of nature, but also constitute crucial building blocks of modern technology: Ranging from data storage over medical instrumentation to transportation. And yet, to this day, they continue to puzzle scientists.

A novel approach to understand magnets was taken by a team of scientists lead by Klaus Sengstock and Ludwig Mathey from the Institute of Laser Physics at the University of Hamburg, with collaborators from Dresden, Innsbruck and Barcelona.

In a joint experimental and theoretical effort, which was featured as the cover story of Nature Physics in November 2013, quantum matter waves made of Rubidium atoms were controlled in such a way that they mimic magnets. Under these well-defined conditions, these artificially created magnets can be studied with clarity, and can give a fresh perspective on long-standing riddles.

Quantum matter waves themselves are an intriguing state of atomic Rubidium clouds, based on a quantum mechanical effect predicted by Einstein and Bose as early as 1924 and observed for the first time in a ground-breaking experiment in 1995, which was later awarded with the Nobel prize.

Building on that experiment and developing it further, the team of scientists used infrared laser beams to force the atoms into a motion along triangular pathways, creating quantum matter waves that act as if they were magnets, like the ones you stick on your fridge. Speaking of cold, these atoms are about a trillion times colder than outer space.

"The experimental challenges are extraordinary", says lead experimental author Julian Struck. "For the atoms to move along the right trajectories, it is absolutely crucial that the laser beams are precisely stabilized. Otherwise, the motion of the atoms would be completely chaotic."

When a matter wave moves clockwise around a given triangle, as depicted in the illustration, the neighboring triangles are surrounded by counterclockwise motion. The resulting orientation at each triangle corresponds to a magnet pointing in North or South direction. These elementary magnets form domains and are in competition with each other, depicted in red and blue.

Lead theoretical author Robert Hoppner explains: "We had to use a supercomputing facility such as the one at Juelich for our computer simulations of the experiment. Otherwise the complexity of the problem cannot be tackled. This allowed us to visualize the triangular magnets created by the condensate of atoms, and we learned about the subtle domain structure and how they respond in a magnetic field."

The results of this study have been published in the November issue of Nature Physics, where an illustration of the magnetic phases from the computer simulation is featured on the cover.

This research was supported by the Deutsche Forschungsgemeinschaft (GRK1355,SFB925), the Hamburg Center for Ultrafast Imaging (CUI) and the Landesexzellenzinitiative Hamburg (supported by the Joachim Herz Stiftung), ERC AdG QUAGATUA, AAII-Hubbard, Spanish MICINN (FIS2008-00784), Catalunya-Caixa, EU Projects AQUTE and NAMEQUAM, the Spanish foundation Universidad.es, the Austrian Science Fund (SFB F40 FOQUS), the DARPA OLE program and the John von Neumann Institute for Computing (NIC). J.Struck, M.Weinberg, C.Olschlager, P.Windpassinger, J.Simonet, K.Sengstock, R.Hoppner, P.Hauke, A.Eckardt, M.Lewenstein and L.Mathey, "Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields." Nature Physics (2013)

.


Related Links
University of Hamburg
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Making a gem of a tiny crystal
Chicago IL (SPX) Dec 08, 2013
Nature builds flawless diamonds, sapphires and other gems. Now a Northwestern University research team is the first to build near-perfect single crystals out of nanoparticles and DNA, using the same structure favored by nature. "Single crystals are the backbone of many things we rely on - diamonds for beauty as well as industrial applications, sapphires for lasers and silicon for electron ... read more


TECH SPACE
Silent Orbit for China's Moon Lander

China's most moon-like place

LADEE Instruments Healthy and Ready for Science

China launches first moon rover mission

TECH SPACE
Rover results include first age and radiation measurements on Mars

Mars lake may have been friendly to microbes: NASA

One-way ticket to Mars: space colonists wanted!

Martian Laser Surpasses 100,000 Zaps

TECH SPACE
Space exploration can drive the next agricultural revolution

Global patent growth hits 18-year high

Facebook joins NYU in artificial intelligence lab

LAS Tower Complete in Preparation for Orion's First Mission

TECH SPACE
China moon rover enters lunar orbit: Xinhua

Turkey keen on space cooperation with China

China space launch debris wrecks villagers' homes: report

Designer: moon rover uses cutting-edge technology

TECH SPACE
New crew to run space station in March

Russian android may take on outer space operations at ISS

Repurposing ISS Trash for Power and Water

Russian spacecraft with advanced navigation system docks with ISS

TECH SPACE
Russian Proton-M rocket launches Inmarsat-5F1 satellite

Basic build-up is being completed for Arianespace's Soyuz to launch Gaia

Third time a charm: SpaceX launches commercial satellite

Arianespace's role as a partner for the US satellite industry

TECH SPACE
Hot Jupiters Highlight Challenges in the Search for Life Beyond Earth

Astronomers find strange planet orbiting where there shouldn't be one

Hubble Traces Subtle Signals of Water on Hazy Worlds

Astronomers detect water in atmosphere of distant exoplanets

TECH SPACE
SST Australia: Signed, Sealed and Ready for Delivery

Scientists build a low-cost, open-source 3D metal printer

An ecosystem-based approach to protect the deep sea from mining

Study shows how water dissolves stone, molecule by molecule




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement