![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by staff writers for SatCom Frontier McLean, VA (SPX) Feb 22, 2016
Satellite innovation continues to evolve at a rapid pace. For example, recently there have been developments in satellite modem technology that can mitigate satellite interference. To get the latest, SatCom Frontier recently sat down with Stuart Daughtridge, Vice President for Advanced Technology at Kratos Defense and Security Solutions, a leading National Security Solutions provider.
Tell us a bit about your company
Can you describe Continuous Wave (CW) interference - what problems it causes?
How does the new class of Kratos modems address these problems?
How does interference monitoring change for HTS systems? How signals are monitored today for satellites with a handful of beams can't cost effectively be scaled up for monitoring HTS' 70+ separate beams. The scale of HTS requires the deployment of much lower cost sensors designed to monitor multiple smaller beams from a signal site. Additionally, to provide the operator with the information needed to quickly identify, characterize and rectify problems when they occur, advanced visualization and management tools are required to manage all the sensors and convert all the sensor data into an actionable status and information on the beams. With respect to interference and RF quality of service monitoring, Kratos has developed lower cost sensors for use with HTS satellites. For Kratos, we leveraged our Monics carrier monitoring technology to develop Monics 200. Designed for spot beam monitoring, Monics 200 provides operators with economical, yet highly versatile DSP-based RF sensors which automatically determine signal modulation type, symbol rate, measured Eb/No, and other parameters as well as providing detection and analysis of interfering signals. This is important because it gives the operator all of the capability of a full Monics sensor. Another innovative technology we see is Digital IF, which allows you to digitize an RF signal and transport it over an IP network. This technology can enhance the operational efficiency of the multiple gateway systems required of HTS/spot beam satellites. Kratos' SpectralNet digitizes RF signals, transports them over IP networks with no degradation or loss, and recreates the RF signal at its destination. This technology allows the gateways' locations to be driven by operational efficiency, rather than by proximity to antenna/RF systems.
How do you see the satellite market changing in the next 18 months? A great example of this is Intelsat's Epic satellites. They will enable incredible new data services to both fixed and mobile platforms supporting higher data rates at lower costs than traditional, shaped beam satellites. Intelsat's Epic satellites also provide impressive onboard routing flexibility to allow Intelsat to offer both fully managed services as well as selling capacity to 3rd party managed service providers. This type of on-orbit flexibility will open up new applications and services to the Satcom industry. The needs of customers are rapidly evolving, requiring new ground system technologies and capabilities. New ground architectures and services, such as Digital IF, for site diversity, are needed to centralize operations, extend network hubs to antennas at remote teleports, and antenna combining to maximize clear-sky performance are becoming available to improve mission assurance. As I stated above, it is going to be a very exciting time for our industry.
Related Links Intelsat General The latest information about the Commercial Satellite Industry
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |