. 24/7 Space News .
ENERGY TECH
System provides cooling with no electricity
by David Chandler for MIT News
Boston MA (SPX) Oct 31, 2019

In the photo on the left, a disk of the new insulating material blocks and reflects visible light, hiding the MIT logo beneath it. But seen in infrared light, at right, the material is transparent and the logo is visible.

Imagine a device that can sit outside under blazing sunlight on a clear day, and without using any power cool things down by more than 23 degrees Fahrenheit (13 degrees Celsius). It almost sounds like magic, but a new system designed by researchers at MIT and in Chile can do exactly that.

The device, which has no moving parts, works by a process called radiative cooling. It blocks incoming sunlight to keep from heating it up, and at the same time efficiently radiates infrared light - which is essentially heat - that passes straight out into the sky and into space, cooling the device significantly below the ambient air temperature.

The key to the functioning of this simple, inexpensive system is a special kind of insulation, made of a polyethylene foam called an aerogel. This lightweight material, which looks and feels a bit like marshmallow, blocks and reflects the visible rays of sunlight so that they don't penetrate through it. But it's highly transparent to the infrared rays that carry heat, allowing them to pass freely outward.

The new system is described in a paper in the journal Science Advances, by MIT graduate student Arny Leroy, professor of mechanical engineering and department head Evelyn Wang, and seven others at MIT and at the Pontifical Catholic University of Chile.

Such a system could be used, for example, as a way to keep vegetables and fruit from spoiling, potentially doubling the time the produce could remain fresh, in remote places where reliable power for refrigeration is not available, Leroy explains.

Minimizing heat gain
Radiative cooling is simply the main process that most hot objects use to cool down. They emit midrange infrared radiation, which carries the heat energy from the object straight off into space because air is highly transparent to infrared light.

The new device is based on a concept that Wang and others demonstrated a year ago, which also used radiative cooling but employed a physical barrier, a narrow strip of metal, to shade the device from direct sunlight to prevent it from heating up. That device worked, but it provided less than half the amount of cooling power that the new system achieves because of its highly efficient insulating layer.

"The big problem was insulation," Leroy explains. The biggest input of heat preventing the earlier device from achieving deeper cooling was from the heat of the surrounding air. "How do you keep the surface cold while still allowing it to radiate?" he wondered. The problem is that almost all insulating materials are also very good at blocking infrared light and so would interfere with the radiative cooling effect.

There has been a lot of research on ways to minimize heat loss, says Wang, who is the Gail E. Kendall Professor of Mechanical Engineering. But this is a different issue that has received much less attention: how to minimize heat gain. "It's a very difficult problem," she says.

The solution came through the development of a new kind of aerogel. Aerogels are lightweight materials that consist mostly of air and provide very good thermal insulation, with a structure made up of microscopic foam-like formations of some material. The team's new insight was to make an aerogel out of polyethylene, the material used in many plastic bags. The result is a soft, squishy, white material that's so lightweight that a given volume weighs just 1/50 as much as water.

The key to its success is that while it blocks more than 90 percent of incoming sunlight, thus protecting the surface below from heating, it is very transparent to infrared light, allowing about 80 percent of the heat rays to pass freely outward. "We were very excited when we saw this material," Leroy says.

The result is that it can dramatically cool down a plate, made of a material such as metal or ceramic, placed below the insulating layer, which is referred to as an emitter. That plate could then cool a container connected to it, or cool liquid passing through coils in contact with it, to provide cooling for produce or air or water.

Putting the device to the test
To test their predictions of its effectiveness, the team along with their Chilean collaborators set up a proof-of-concept device in Chile's Atacama desert, parts of which are the driest land on Earth. They receive virtually no rainfall, yet, being right on the equator, they receive blazing sunlight that could put the device to a real test. The device achieved a cooling of 13 degrees Celsius under full sunlight at solar noon. Similar tests on MIT's campus in Cambridge, Massachusetts, achieved just under 10 degrees cooling.

That's enough cooling to make a significant difference in preserving produce in remote locations, the researchers say. In addition, it could be used to provide an initial cooling stage for electric refrigeration, thus minimizing the load on those systems to allow them to operate more efficiently with less power.

Theoretically, such a device could achieve a temperature reduction of as much as 50 C, the researchers say, so they are continuing to work on ways of further optimizing the system so that it could be expanded to other cooling applications such as building air conditioning without the need for any source of power. Radiative cooling has already been integrated with some existing air conditioning systems to improve their efficiency.

Already, though, they have achieved a greater amount of cooling under direct sunlight than any other passive, radiative system other than those that use a vacuum system for insulation - which is very effective but also heavy, expensive, and fragile.

This approach could also be a low-cost add-on to any other kind of cooling system, providing additional cooling to supplement a more conventional system. "Whatever system you have," Leroy says, "put the aerogel on it, and you'll get much better performance."

Research Report: "High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel"


Related Links
Massachusetts Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Energy flow in the nano range
Wurzburg, Germany (SPX) Oct 19, 2019
Plants and bacteria lead the way: They can capture the energy of sunlight with light-harvesting antennas and transfer it to a reaction centre. Transporting energy efficiently and in a targeted fashion in a minimum of space - this is also of interest to mankind. If scientists were to master it perfectly, they could significantly improve photovoltaics and optoelectronics. But how can the flow of energy be observed? This is what Tobias Brixner's group at the Institute of Physical and Theoretical Chem ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
China talks up tech prowess in face of US rivalry

Quantum leap in computing as scientists claim 'supremacy'

ESA and Airbus to cooperate on the Bartolomeo platform

Roscosmos agrees to reschedule Progress launch following request from NASA

ENERGY TECH
Air Force demonstrates rocket engine preburner for advanced liquid rocket engines

Russia to launch Angara Carrier Rocket in 2024

NASA attaches first of 4 RS-25 engines to Artemis I rocket stage

Rocket Lab teams with Kongsberg for Electron and Photon ground support

ENERGY TECH
Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

Naming a NASA Mars rover can change your life

Martian landslides not conclusive evidence of ice

ENERGY TECH
China's absence from global space conference due to "visa problem" causes concern

China prepares for space station construction

China's rocket-carrying ships depart for transportation mission

China's KZ-1A rocket launches two satellites

ENERGY TECH
Launch of the European AGILE 4.0 research project

SpaceX seeking many more satellites for space-based internet grid

OmegA team values partnerships with customer, suppliers

Call for innovation to advance Europe's lab in space

ENERGY TECH
Drexel researchers develop coal ash aggregate that helps concrete cure

Magnets sustainably separate mixtures of rare earth metals

NASA taps telecommunications technology to develop more capable, miniaturized spectrometer

Space collisions a growing concern as Earth orbit gets more crowded

ENERGY TECH
With NASA telescope on board, search for intelligent aliens 'more credible'

When Exoplanets Collide

Ancient microbes are living inside Europe's deepest meteorite crater

The search for extrasolar planets continues

ENERGY TECH
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.