. 24/7 Space News .
OUTER PLANETS
SwRI scientists discover a new auroral feature on Jupiter
by Staff Writers
San Antonio TX (SPX) Mar 30, 2021

The SwRI-led Ultraviolet Spectrograph (UVS) orbiting Jupiter aboard NASA's Juno spacecraft allowed scientists to discover faint aurora features likely triggered by charged particles coming from the edge of Jupiter's massive magnetosphere. This occurrence, shown in the false color series of images recorded 30 seconds apart (red panels), displays the characteristically ring-like emissions, expanding rapidly over time.

The SwRI-led Ultraviolet Spectrograph (UVS) orbiting Jupiter aboard NASA's Juno spacecraft has detected new faint aurora features, characterized by ring-like emissions, which expand rapidly over time. SwRI scientists determined that charged particles coming from the edge of Jupiter's massive magnetosphere triggered these auroral emissions.

"We think these newly discovered faint ultraviolet features originate millions of miles away from Jupiter, near the Jovian magnetosphere's boundary with the solar wind," said Dr. Vincent Hue, lead author of a paper accepted by the Journal of Geophysical Research: Space Physics. "The solar wind is a supersonic stream of charged particles emitted by the Sun. When they reach Jupiter, they interact with its magnetosphere in a way that is still not well understood."

Both Jupiter and Earth have magnetic fields that provide protection from the solar wind. The stronger the magnetic field, the larger the magnetosphere. Jupiter's magnetic field is 20,000 times stronger than Earth's and creates a magnetosphere so large it begins to deflect the solar wind 2-4 million miles before it reaches Jupiter.

"Despite decades of observations from Earth combined with numerous in-situ spacecraft measurements, scientists still do not fully understand the role the solar wind plays in moderating Jupiter's auroral emissions," said SwRI's Dr. Thomas Greathouse, a co-author on this study. "Jupiter's magnetospheric dynamics, the motion of charged particles within its magnetosphere, is largely controlled by Jupiter's 10-hour rotation, the fastest in the solar system. The solar wind's role is still debated."

One of the goals of the Juno mission, recently approved by NASA for an extension until 2025, is to explore Jupiter's magnetosphere by measuring its auroras with the UVS instrument. Previous observations with the Hubble Space Telescope and Juno have allowed scientists to determine that most of Jupiter's powerful auroras are generated by internal processes, that is the motion of charged particles within the magnetosphere. However, on numerous occasions, UVS has detected a faint type of aurora, characterized by rings of emissions expanding rapidly with time.

"The high-latitude location of the rings indicates that the particles causing the emissions are coming from the distant Jovian magnetosphere, near its boundary with the solar wind," said Bertrand Bonfond, a co-author on this study from Belgium's Liege University. In this region, plasma from the solar wind often interacts with the Jovian plasma in a way that is thought to form "Kelvin-Helmholtz" instabilities.

These phenomena occur when there are shear velocities, such as at the interface between two fluids moving at different speeds. Another potential candidate to produce the rings are dayside magnetic reconnection events, where oppositely directed Jovian and interplanetary magnetic fields converge, rearrange and reconnect.

Both of these processes are thought to generate particle beams that could travel along the Jovian magnetic field lines, to eventually precipitate and trigger the ring auroras on Jupiter.

"Although this study does not conclude what processes produce these features, the Juno extended mission will allow us to capture and study more of these faint transient events," Hue said.

Research paper


Related Links
Southwest Research Institute
The million outer planets of a star called Sol


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


OUTER PLANETS
SwRI scientists help identify the first stratospheric winds measured on Jupiter
San Antonio TX (SPX) Mar 19, 2021
Working with a team led by French astronomers, Southwest Research Institute scientists helped identify incredibly powerful winds in Jupiter's middle atmosphere for the first time. The team measured molecules exhumed by the 1994 impact of comet Shoemaker-Levy 9 to trace winds in excess of 900 miles per hour near Jupiter's poles. Jupiter's distinctive red and white bands of swirling clouds allow scientists to track winds in the planet's lower atmosphere, and the SwRI team members have particular exp ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
NASA Engineers Analyze Navigation Needs of Artemis Moon Missions

Russian Progress MS-14 spacecraft sets new flight duration record

Keeping track of spacecraft as Earth's water alters its spin

Reports: Biden to tap Bill Nelson as NASA administrator

OUTER PLANETS
SpaceX launch sends 23rd Starlink communications satellite cluster

EUMETSAT and Arianespace confirm deal to launch of two Meteosat satellites with Ariane 6

Rocket Lab launches 100th satellite

ESA boost for UK space transportation initiatives

OUTER PLANETS
Wright brothers' wing fragment to take flight again on Mars

NASA's Mars helicopter may fly as early as April 8

NASA Ingenuity Mars Helicopter prepares for first flight

For some scientists, Mars 2020 is a mission of perseverance

OUTER PLANETS
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

OUTER PLANETS
NASA Provides $45M Boost to US Small Businesses

SKY Perfect JSAT signs contract with Airbus to build Superbird-9 telco satellite

Russia launches more UK telecom satellites into space

BlackSky's newest satellite delivers first insights within 24 hours

OUTER PLANETS
Light show over US sky likely SpaceX debris re-entering atmosphere

Deployable propulsion for satellites

Astroscale confirms successful launch of ELSA-d satellite deorbiter

Decades of radiation-based scientific theory challenged

OUTER PLANETS
How asteroid dust helped us prove life's raw ingredients can evolve in outer space

Pandora Mission Would Expand NASA's Capabilities in Probing Alien Worlds

Photosynthesis could be as old as life itself

ASU scientists determine origin of strange interstellar object

OUTER PLANETS
The PI's Perspective: Far From Home

SwRI scientists help identify the first stratospheric winds measured on Jupiter

Jupiter's Great Red Spot feeds on smaller storms

Juno reveals dark origins of one of Jupiter's grand light shows









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.