. | . |
SwRI scientists compile Cassini's unique observations of Saturn's rings by Staff Writers San Antonio TX (SPX) Oct 19, 2022
Southwest Research Institute scientists have compiled 41 solar occultation observations of Saturn's rings from the Cassini mission. The compilation, published recently in the scientific journal Icarus, will inform future investigations of the particle size distribution and composition of Saturn's rings, key elements to understanding their formation and evolution. "For nearly two decades, NASA's Cassini spacecraft shared the wonders of Saturn and its family of icy moons and signature rings, but we still don't definitively know the origins of the ring system," said Dr. Stephanie Jarmak, a researcher in the SwRI Space Science Division. "Evidence indicates that the rings are relatively young and could have formed from the destruction of an icy satellite or a comet. However, to support any one origin theory, we need to have a good idea of the size of particles making up the rings." Cassini's Ultraviolet Imaging Spectrograph (UVIS) was uniquely sensitive to some of the smallest ring particles, particularly with the observations it made in the extreme ultraviolet wavelength. To determine the size of the ring particles, UVIS observed them when the instrument was pointed at the Sun, looking through the rings in what is known as a solar occultation. Ring particles partially blocked the path of the light, providing a direct measurement of the optical depth, a key parameter for determining the size and composition of the ring particles. "Given the wavelength of the light coming from the Sun, these observations gave us insight into the smallest particle sizes with Saturn's rings," Jarmak said. "UVIS can detect dust particles at the micron level, helping us understand the origin, collisional activity and destruction of the ring particles within the system." The compilation also delves into the variations in the optical depth of occultation observations, which can help determine particle size and composition. During an occultation, light emitted by a background source, such as the Sun, is absorbed and scattered by the particles in the light's path. The amount of light blocked by ring particles provides a direct measurement of the ring optical depth. Including optical depth is vital to understanding the structure of the rings. The research measured the optical depth as a function of the viewing geometry, which refers to the observation angles of the ring system with respect to the Cassini spacecraft. As light passing through the rings changes at various angles, scientists can form a picture of the rings' structures. "Ring systems around giant planets also provide test beds for investigating fundamental physical properties and processes in our solar system in general," Jarmak said. "These particles are thought to result from objects colliding and forming in a disk and building up larger particles. Understanding how they form these ring systems could help us understand how planets form as well."
Research Report:"Solar occultation observations of Saturn's rings with Cassini UVIS"
Saturn's rings and tilt could be the product of an ancient, missing moon Boston MA (SPX) Sep 16, 2022 Swirling around the planet's equator, the rings of Saturn are a dead giveaway that the planet is spinning at a tilt. The belted giant rotates at a 26.7-degree angle relative to the plane in which it orbits the sun. Astronomers have long suspected that this tilt comes from gravitational interactions with its neighbor Neptune, as Saturn's tilt precesses, like a spinning top, at nearly the same rate as the orbit of Neptune. But a new modeling study by astronomers at MIT and elsewhere has found that, ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |