. | . |
SwRI demonstrates balloon-based solar observatory by Staff Writers San Antonio TX (SPX) Nov 08, 2019
Southwest Research Institute successfully demonstrated a miniature solar observatory on a high-altitude balloon November 1. The SwRI Solar Instrument Pointing Platform (SSIPP) - a reusable, high-precision solar observatory about the size of a mini fridge and weighing 160 pounds - was carried by a stratospheric balloon, collecting 75 minutes of solar images in the proof-of-concept flight. "SSIPP is a novel, low-cost observatory prototype," said SwRI's Dr. Craig DeForest, principal investigator of the NASA Flight Opportunities mission. "We are working to provide similar infrastructure and flexibility to a ground-based observatory, delivered to near-space." SSIPP collects solar data using infrared, ultraviolet or visible light instruments on an optical table, similar to those used in ground-based observatories but from a near-space environment. SSIPP is an arcsecond-class observatory, which provides optical precision equivalent to imaging a dime from a mile away. The platform supports the development of custom solar instruments. Collecting data from the edge of space - around 20 miles above the Earth's surface - avoids image distortions caused by looking through the atmosphere. "SSIPP could support the development of a range of new instruments for the near-space environment at relatively low cost," DeForest said. SSIPP includes an "optical table," a stable platform used to support optics in a laboratory environment. "Using a standard optical table platform increases flexibility, allowing scientists to develop new technologies without designing a custom observatory. For instance, scientists are interested in the cacophony produced by the roiling solar environment." While sound cannot travel through the vacuum of space, scientists can detect sound on the Sun by imaging the disturbances it creates in the solar atmosphere. During the demonstration flight, which imaged a special range of blue light called the "g band," SwRI scientists Dr. Glenn Laurent and Dr. Derek Lamb demonstrated the platform's pointing capability and will search the images for visible signatures of "high-frequency" solar sound waves, which are actually some eight octaves below the deepest audible notes. In comparison, the most studied sound waves in the Sun are five octaves deeper. "The transfer of heat to the surface of our star is a violent and tremendously loud process," DeForest said. "Sound waves can heat the solar atmosphere to extremely high temperatures, but it's a poorly understood process. Existing measurements cannot account for all the energy required. The 10-second frequency range is very hard to measure from the ground, because Earth's turbulent atmosphere confuses the signal." Because existing spaceborne assets are optimized for different science, the frequency range observed by SSIPP fills a gap in current measurements, highlighting the importance of new instruments to advance knowledge. "Upon reaching the stratosphere, SSIPP immediately locked onto the solar disk using a novel two-stage pointing system," Laurent said. "The next step for SSIPP is to partner with outside institutions to extend quick-turnaround solar flights to a range of scientific instrumentation." SSIPP launched aboard a World View stratospheric balloon, funded by NASA's Flight Opportunities Program under the Space Technology Mission Directorate. The program is managed by NASA's Armstrong Flight Research Center in Edwards, California.
A decade probing the Sun Paris (ESA) Nov 05, 2019 Ten years ago, a small satellite carrying 17 new devices, science instruments and technology experiments was launched into orbit, on a mission to investigate our star and the environment that it rules in space. On 2 November, 2009, Proba2 began its journey on board a Rockot launcher from the Russian launch base, Plesetsk, and was inserted into a Sun-synchronous orbit around Earth. Tracing this 'dusk-dawn' line - where night meets day - Proba2 maintains a constant view of the Sun, keeping its ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |