. | . |
SwRI-contributed study provides darkest view ever of interstellar ices by Staff Writers San Antonio TX (SPX) Jan 24, 2023
An international team including Southwest Research Institute, Leiden University and NASA used observations from the James Webb Space Telescope (JWST) to achieve the darkest ever view of a dense interstellar cloud. These observations have revealed the composition of a virtual treasure chest of ices from the early universe, providing new insights into the chemical processes of one of the coldest, darkest places in the universe as well as the origins of the molecules that make up planetary atmospheres. "The JWST allowed us to study ices that exist on dust grains within the darkest regions of interstellar molecular clouds," said SwRI Research Scientist Dr. Danna Qasim, co-author of the study published in Nature Astronomy. "The clouds are so dense that these ices have been mostly protected from the harsh radiation of nearby stars, so they are quite pristine. These are the first ices to be formed and also contain biogenic elements, which are important to life." NASA's JWST has a 6.5-meter-wide mirror providing remarkable spatial resolution and sensitivity, optimized for infrared light. As a result, the telescope has been able to image the densest, darkest clouds in the universe for the first time. "These observations provide new insights into the chemical processes in one of the coldest, darkest places in the universe to better understand the molecular origins of protoplanetary disks, planetary atmospheres, and other Solar System objects," Qasim said. Most interstellar ices contain very small amounts of elements like oxygen and sulfur. Qasim and her co-authors seek to understand the lack of sulfur in interstellar ices. "The ices we observed only contain 1% of the sulfur we're expecting. 99% of that sulfur is locked-up somewhere else, and we need to figure out where in order to understand how sulfur will eventually be incorporated into the planets that may host life," Qasim explained. In the study, Qasim and colleagues propose that the sulfur may be locked in reactive minerals like iron sulfide, which may react with ices to form the sulfur-bearing ices observed. "Iron sulfide is a highly reactive mineral that has been detected in the accretion disks of young stars and in samples returned from comets. It's also the most common sulfide mineral in lunar rocks," Qasim said. "If sulfur is locked-up in these minerals, that could explain the low amount of sulfur in interstellar ices, which has implications for where sulfur is stored in our Solar System. For example, the atmosphere of Venus has sulfur-containing molecules, in which the sulfur could have partially come from interstellar-inherited minerals."
Research Report:An Ice Age JWST inventory of dense molecular cloud ices
A new model for dark matter Ann Arbor MI (SPX) Jan 24, 2023 Dark matter remains one of the greatest mysteries of modern physics. It is clear that it must exist, because without dark matter, for example, the motion of galaxies cannot be explained. But it has never been possible to detect dark matter in an experiment. Currently, there are many proposals for new experiments: They aim to detect dark matter directly via its scattering from the constituents of the atomic nuclei of a detection medium, i.e., protons and neutrons. A team of researchers-Robert ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |