. 24/7 Space News .
IRON AND ICE
Surprisingly old surface discovered on near-Earth asteroid Bennu
by Staff Writers
San Antonio TX (SPX) Mar 20, 2019

sing data from NASA's OSIRIS-REx mission, an SwRI-led team discovered that the surface of near-Earth asteroid Bennu is geologically older than expected. Craters and large, often fractured boulders (shown here) likely date from the time the asteroid was still orbiting in the main asteroid belt between Mars and Jupiter.

A Southwest Research Institute-led team has discovered that the surface geology on asteroid Bennu is older than expected. Early observations of the near-Earth asteroid (NEA) by NASA's OSIRIS-REx mission indicate a surface that is between 100 million and 1 billion years old.

"We expected small, kilometer-sized NEAs to have young, frequently refreshed surfaces," said SwRI's Dr. Kevin Walsh, a mission co-investigator and lead author of a paper outlining the discovery published March 19 in Nature Geoscience.

"However, numerous large impact craters as well as very large, fractured boulders scattered across Bennu's surface look ancient. We also see signs of some resurfacing taking place, indicating that the NEA retains very old features on its surface while still having some dynamic processes at play."

The OSIRIS-REx spacecraft is visiting Bennu, a carbonaceous asteroid whose surface may record the earliest history of our solar system. Bennu was chosen based on its size, composition and proximity to Earth, passing nearby every six years. Its dusty regolith may contain molecular precursors to the origin of life and the Earth's oceans.

Bennu is a "rubble pile" asteroid held together by its own gravity. Small rubble-pile asteroids likely formed in the main asteroid belt from debris accumulated following the breakup of a much larger asteroid. While in the main asteroid belt between Mars and Jupiter, these objects would be constantly bombarded by impactors, but once they leave the main belt and become NEAs, they are subject to further evolutionary processes. Rotational spin-up due to heating or tidal effects caused by close planetary flybys can alter their shape and surface.

"Both large craters and a widespread population of fractured boulders date back hundreds of millions of years to when Bennu was in the main asteroid belt," Walsh said. "Meanwhile we found signs of more recent surface movement, but it is either too localized or too infrequent to modify Bennu as much as expected. Maybe it hasn't gotten close enough to a planet or the Sun to be modified on a large scale."

The very large boulders scattering the surface were also a surprise. Earth-based observations indicated that the largest might be 65 feet across; however, several boulders are larger than 150 feet in size. They also exhibit diverse brightness, structures and textures.

"They are too big and diverse to be the result of cratering," Walsh said. "They had to date back from when Bennu formed. The boulders also have deep fractures, and the types of fractures are also variable."

The geology of Bennu is critical to the final phase of the mission, when the spacecraft will make the high-stakes venture to touch the surface to sample the regolith. Scientists first need to identify where to collect a sample, then grab particles up to 2-3 centimeters in size to return to Earth in 2023.

"This is the first time NASA has tried something like this," Walsh said. "It's very challenging because Bennu is so small and hard to orbit. But it's very exciting to be contributing to the science necessary to make these critical decisions."


Related Links
OSIRIS-REx at NASA
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
OSIRIS-REx images close in on Bennu's northern hemisphere
Greenbelt MD (SPX) Mar 15, 2019
This trio of images acquired by NASA's OSIRIS-REx spacecraft shows a wide shot and two close-ups of a region in asteroid Bennu's northern hemisphere. The wide-angle image (left), obtained by the spacecraft's MapCam camera, shows a 590-foot (180-meter) wide area with many rocks, including some large boulders, and a "pond" of regolith that is mostly devoid of large rocks. The two closer images, obtained by the high-resolution PolyCam camera, show details of areas in the MapCam image, specifica ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
NASA astronauts Hague, Koch arrive safely at Space Station

Soyuz MS-12 docks at the International Space Station

3 astronauts on Soyuz craft successfully reach ISS

Astronauts on aborted Soyuz launch to blast off again for ISS

IRON AND ICE
Russia's Vostochny Cosmodrome Ready for Space, ISS Launches

Bridenstine addesses SLS and Orion workforce at NASA

NASA heavy rocket may not get off the ground in time for Lunar mission

Brazil leader, wooing Trump, opens base to US rockets

IRON AND ICE
InSight lander among latest ExoMars image bounty

Pathfinder Rover May Have Explored Edges of Early Mars Sea in 1997

Trembling Aspen Leaves Could Save Future Mars Rovers

Rehearsing for the Mars landings in Hawaii and Idaho

IRON AND ICE
Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

IRON AND ICE
Lockheed Martin develops world-first LTE-Over-Satellite System

OneWeb Secures $1.25 Billion in New Funding After Successful Launch

New observations for the new economy

Space workshops to power urban innovation

IRON AND ICE
ANU research set to shake up space missions

Acucela Signs Agreement to Develop a Compact OCT for NASA's Deep Space Missions

At the limits of detectability

CesiumAstro raises $12M to develop faster comms for aerospace platforms

IRON AND ICE
ALMA observes the formation sites of solar-system-like planets

Neural Networks Predict Planet Mass

Cooking Up Alien Atmospheres on Earth

SETI Institute: Agreement with Unistellar to Develop Citizen Science Network

IRON AND ICE
A Prehistoric Mystery in the Kuiper Belt

Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

Astronomers Optimistic About Planet Nine's Existence









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.