. 24/7 Space News .
TIME AND SPACE
Superinsulators to become scientists' quark playgrounds
by Staff Writers
Lemont IL (SPX) Feb 01, 2019

This image shows a 3D superinsulator, in which vortex condensate (green lines) squeezes the electric field lines connecting charge-anticharge pairs (red and blue balls) into the electric strings (orange strips). These strings tightly bind these charge-anticharge pairs, completely immobilizing them, so electric current cannot be produced.

Scientists widely accept the existence of quarks, the fundamental particles that make up protons and neutrons. But information about them is still elusive, since their interaction is so strong that their direct detection is impossible and exploring their properties indirectly often requires extremely expensive particle colliders and collaborations between thousands of researchers. So, quarks remain conceptually foreign and strange like the Cheshire cat in "Alice's Adventures in Wonderland," whose grin is detectable - but not its body.

An international group of scientists that includes materials scientist Valerii Vinokur from the U.S. Department of Energy's (DOE) Argonne National Laboratory have developed a new method for exploring these fundamental particles that exploits an analogy between the behavior of quarks in high-energy physics and that of electrons in condensed-matter physics. This discovery will help scientists formulate and conduct experiments that could provide conclusive evidence for quark confinement, asymptotic freedom, and other phenomena, such as whether superinsulators can exist in both two and three dimensions.

Vinokur, working with Maria Cristina Diamantini from the University of Perugia in Italy and Carlo Trugenberger from SwissScientific Technologies in Switzerland, devised a theory around a new state of matter called a superinsulator, in which electrons display some of the same properties as quarks.

The electrons, they determined, share two important properties that govern quark interactions: confinement and asymptotic freedom. Confinement is the mechanism that binds quarks together into composite particles. Unlike electrically charged particles, quarks cannot be separated from each other. As distance between them increases, their pull only becomes stronger.

"This is not our everyday experience," said Vinokur. "When you pull magnets apart, it becomes easier as they're separated, but the opposite is true of quarks. They resist fiercely."

Quark interactions are also characterized by asymptotic freedom, where quarks at close distance stop interacting altogether. Once they travel a certain distance away from each other, a nuclear force tugs them back in.

In the late 1970s, Nobel laureate Gerard 't Hooft first explained these two newly theorized properties using an analogy. He imagined a state of matter that is the opposite of a superconductor in that it infinitely resists the flow of charge rather than infinitely conducting it. In a "superinsulator," as 't Hooft called this state, pairs of electrons with different spins - Cooper pairs - would bind together in a way that is mathematically identical to quark confinement inside elementary particles.

"The distorted electric field in a superinsulator creates a string that binds the couples of Cooper pairs, and the more you stretch them, the more the couple resists to separation," said Vinokur. "This is the mechanism that binds quarks together into protons and neutrons."

In 1996, unaware of 't Hooft's analogy, Diamantini and Trugenberger - along with colleague Pascuale Sodano - predicted the existence of superinsulators. However, superinsulators remained theoretical until 2008, when an international collaboration led by Argonne investigators rediscovered them in films of titanium nitride.

Using their experimental results, they constructed a theory describing superinsulator behavior that eventually led to their recent discovery, which established a Cooper pair analog to both confinement and the asymptotic freedom of quarks, the way 't Hooft imagined, noted Vinokur.

The theory of superinsulators fleshes out a mental model that high-energy physicists can use to think about quarks, and it offers a powerful laboratory for exploring confinement physics using easily accessible materials.

"Our work suggests that systems smaller than the typical length of the strings that bind the Cooper pairs behave in an interesting way," said Vinokur. "They move almost freely at this scale because there is not enough room for high-strength forces to develop. This movement is analogous to the free motion of quarks at a small enough scale."

Vinokur and co-researchers Diamantini, Trugenberger, and Luca Gammaitoni at the University of Perugia are seeking ways to conclusively differentiate between 2D and 3D superinsulators. So far, they have found one - and it has broad significance, challenging conventional notions about how glass forms.

To discover how to synthesize a 2D or 3D superinsulator, researchers need "a full understanding of what makes one material three-dimensional and another two-dimensional," Vinokur said.

Their new work shows that 3D superinsulators display a critical behavior known as Vogel-Fulcher-Tammann (VFT) when transitioning to a superinsulating state. Superinsulators in 2D, however, display a different behavior: the Berezinskii-Kosterlitz-Thouless transition.

The discovery that VFT is the mechanism behind 3D superinsulators revealed something surprising: VFT transitions, first described nearly a century ago, are responsible for the formation of glass from a liquid. Glass is not crystalline, like ice - it emerges from an amorphous, random arrangement of atoms that rapidly freeze into a solid.

The cause of VFT has remained a mystery since its discovery, but scientists long believed it began with some kind of external disorder. The 3D superinsulators described in Vinokur's paper challenge this conventional notion and, instead, suggest disorder can evolve from an internal defect in the system. The idea that glasses can be topological - they can alter their intrinsic properties while remaining materially the same - is a new discovery.

"This fundamental breakthrough constitutes a significant step in understanding the origin of irreversibility in nature," Vinokur said. The next step will be to observe this theoretical behavior in 3D superinsulators.

The study brought together researchers from markedly different disciplines. Vinokur is a condensed matter physicist, while Gammaitoni focuses on quantum thermodynamics. Diamantini and Trugenberger are in quantum field theory.

"It was most remarkable that we came from very disparate fields of physics," Vinokur said. "Combining our complementary knowledge enabled us to achieve these breakthroughs."

Results from the Cooper pairs study appear in the paper "Confinement and asymptotic freedom with Cooper pairs," published on Nov. 7, 2018 in Communications Physics. Work on 3D superinsulator mechanisms is outlined in the paper "Vogel-Fulcher-Tamman criticality of 3D superinsulators," published in Scientific Reports on October 24, 2018.


Related Links
Argonne National Laboratory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Taking magnetism for a spin: Exploring the mysteries of skyrmions
Ames IA (SPX) Jan 24, 2019
Scientists at the U.S. Department of Energy's Ames Laboratory have discovered the relaxation dynamics of a zero-field state in skyrmions, a spinning magnetic phenomenon that has potential applications in data storage and spintronic devices. Skyrmions are nanoscale whirls or vortices of magnetic poles that form lattices within a magnetic material, a type of quasiparticle that can zip across the material, pushed by electrical current. Those properties have captured the fascination of scientists, who ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
ISRO Unveils Human Space Flight Centre in Bengaluru

Waystation to the Solar System

Blue Origin to make 10th flight test of space tourist rocket

Duration of UAE Astronaut's Mission on Board ISS Reduced to 8 Days

TIME AND SPACE
ISRO Set To Launch Communication Satellite GSAT-31 On February 6

The Future of Space Prospecting: Surprising Rocket Fuel Unveiled

NASA Completes Booster Motor Segments for First Space Launch System Flight

China launched world's first rocket-deployed weather instruments from unmanned semi-submersible vehicle

TIME AND SPACE
InSight's Seismometer Now Has a Cozy Shelter on Mars

Research Uses Curiosity Rover to Measure Gravity on Mars

What Can Curiosity Tell Us About How a Martian Mountain Formed

Curiosity Says Farewell to Mars' Vera Rubin Ridge

TIME AND SPACE
China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

TIME AND SPACE
3400 new UK space jobs created

Asgardia Micro-Nation to Launch 10,000 Satellites to Make Web Free

OneWeb delays launch of satellites due to problems with Russian carrier rocket

Thales Alenia Space and Maxar Consortium Achieve Major Milestone in Design Phase of Telesat's LEO Satellite Constellation

TIME AND SPACE
South African-Scottish research team demonstrate fractal light from lasers

Environmentally stable laser emits exceptionally pure light

New 3D printer shapes objects with rays of light

Artificial intelligence ARTIST instantly captures materials' properties

TIME AND SPACE
Magnifying glass reveals unexpected intermediate mass exoplanets

Where Is Earth's Submoon?

Planetary collision that formed the Moon made life possible on Earth

Astronomers find star material could be building block of life

TIME AND SPACE
Sodium, Not Heat, Reveals Volcanic Activity on Jupiter's Moon Io

New Horizons' Newest and Best-Yet View of Ultima Thule

Missing link in planet evolution found

Juno's Latest Flyby of Jupiter Captures Two Massive Storms









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.