. 24/7 Space News .
EARLY EARTH
Sulfur analysis supports timing of oxygen's appearance
by Staff Writers
Houston TX (SPX) Jul 24, 2018

.

Scientists have long thought oxygen appeared in Earth's lower atmosphere 2.7 billion years ago, making life as we know it possible. A Rice University researcher has added evidence to support that number.

The sulfur record held by ancient rock marks the dramatic change in the planet's atmosphere that gave rise to complex life, but rocks are local indicators. For the big picture, Rice biogeochemist Mark Torres used water that flows over and erodes the rocks as a proxy.

Torres, a Rice assistant professor of Earth, environmental and planetary sciences, and his colleagues report in Nature Geoscience that the balance of sulfur isotope anomalies in Archean rock, a marker of the "great oxygenation event," can also be recognized and measured in the rivers that erode it.

The researchers sampled water from two of the few places on Earth where Archean rock is exposed in abundance: at the Superior Craton in Canada and in South Africa. They determined that while individual samples of rock may still show an imbalance (the anomalies) of sulfur isotopes, careful analysis of the water that diffuses and transports sulfur from thousands of miles of rock to the ocean shows that the contents are ultimately in alignment with bulk Earth's sulfur signature.

"Changes in chemistry can tell you something about the environment, and rocks can tell you whether there was oxygen at a particular time," Torres said. "Early in our history, sulfur isotope anomalies are all over the place. Then, roughly 2.7 billion years ago, they disappear and they never come back."

Sulfur is a marker because four stable isotopes, known by their molecular masses of 32, 33, 34 and 36, can show different behaviors when present in the atmosphere. "Most sulfur is mass 32, but there are small amounts of the other masses," Torres said.

Ultraviolet light from the sun reacted with sulfur gas and split it into separate compounds with heavier and lighter isotopes. Eventually, these compounds sunk into and remain in rock that formed at the time.

"But there's this weird thing: Really old rocks have more 33-sulfur in them than we would expect, based on the relative masses," Torres said. "Because 33 is one heavier than 32, we should easily be able to predict their relative abundances using physical chemistry. But, we find that 33 is way more abundant than expected. That's why we call it an anomaly."

When oxygen appeared, it absorbed ultraviolet light and quenched the sulfur reaction, as seen in the rock. That's all well and good, Torres said, but the theory doesn't account for anomalous sulfur that continued to leach from Archean rock into surface water, be carried to the ocean and then condense into new rock that would also have the anomaly.

"This recycling of ancient rock was a way to perpetuate the anomaly even after oxygen had arisen," he said. The researchers suspected persistence of the anomaly could blur understanding of the timing of oxygen's rise by as much as 100 million years.

It didn't, they discovered, but it wasn't easy. The team included researchers from the California Institute of Technology and the Center for Petrographic and Geochemical Research in Nancy, France. Members collected scores of samples from the Canadian sites to go along with South African samples they already had and checked their sulfur signature after eliminating the effects of contaminants from sulfurous acid rain, ice-melting road salt and dust from local mining operations. But their final calculations showed a robust balance in 33-sulfur collected by river runoff over a wide area.

"Our effort allows us to be confident we've got the timing for this great oxidation event, so now we can start to understand the mechanisms," Torres said. "If you think about the whole scope of Earth's history, 100 million years is small, but on the evolutionary timeline of organisms, it matters."

Research paper


Related Links
Rice University
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
ANU scientists discover the world's oldest colors
Canberra, Australia (SPX) Jul 23, 2018
Scientists from The Australian National University (ANU) and overseas have discovered the oldest colours in the geological record, 1.1 billion-year-old bright pink pigments extracted from rocks deep beneath the Sahara desert in Africa. Dr Nur Gueneli from ANU said the pigments taken from marine black shales of the Taoudeni Basin in Mauritania, West Africa, were more than half a billion years older than previous pigment discoveries. Dr Gueneli discovered the molecules as part of her PhD studies. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Boeing's quest to take astronauts to space station hits snag

Seeking 72-hour Space Environment Forecasts with Updates on the Hour

First space tourist flights could come in 2019

A Two-Dimensional Space Program

EARLY EARTH
Hot firing proves solid rocket motor for Ariane 6 and Vega-C

Roscosmos' Research Center's Staff Suspected of Leaking Data Abroad

2018 end to be busy for ISRO with several rocket launches

Arianespace's Ariane 5 launch for the Galileo constellation and Europe

EARLY EARTH
'Storm Chasers' on Mars Searching for Dusty Secrets

Martian Atmosphere Behaves as One

NASA's MAVEN Spacecraft Finds That "Stolen" Electrons Enable Unusual Aurora on Mars

Name Europe's robot to roam and search for life on Mars

EARLY EARTH
PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

EARLY EARTH
Space, not Brexit, is final frontier for Scottish outpost

Billion Pound export campaign to fuel UK space industry

mu Space confirms payload on Blue Origin's upcoming New Shepard flight

New satellite constellations will soon fill the sky

EARLY EARTH
Researchers unravel more mysteries of metallic hydrogen

What's your idea to 3D print on the Moon

Why won't Parker Solar Probe melt

New application of blue light sees through fire

EARLY EARTH
WSU researcher sees possibility of moon life

X-ray Data May Be First Evidence of a Star Devouring a Planet

Glowing bacteria on deep-sea fish shed light on evolution, 'third type' of symbiosis

Origami-inspired device helps marine biologists study aliens

EARLY EARTH
The True Colors of Pluto and Charon

Radiation Maps of Jupiter's Moon Europa: Key to Future Missions

Dozen new Jupiter moons declared

NASA Juno data indicate another possible volcano on Jupiter moon Io









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.