. 24/7 Space News .
CARBON WORLDS
Subsurface geophysics is key to geological carbon dioxide storage
by Staff Writers
Houston TX (SPX) Jun 18, 2021

illustration only

A crucial step in sequestering carbon dioxide and realizing the energy transition means finding where to store it to avoid earthquakes and possible leakage pathways, which Yingcai Zheng at the University of Houston is taking on in collaboration with Los Alamos National Lab and Vecta Oil and Gas with support from the U.S. Department of Energy.

The date is set. According to not only the Paris Agreement but also with support from the city of Houston, 196 participating countries - including the United States, must meet a net-zero carbon emission goal by 2050. With Houston already the energy capital of the world, it is no surprise that the city is positioning itself as the up-and-coming carbon capture, utilization and storage (CCUS) hub of the U.S. Reaching the target means not only pushing green energy, but also supporting more energy efficient, sustainable and environmentally conscious fossil fuels.

In pursuit of net-zero carbon emissions by 2050, the U.S. Department of Energy (DOE) is supporting innovative efforts to realize this new goal. Yingcai Zheng, Robert and Margaret Sheriff Professor in Applied Geophysics at the University of Houston, won a $799,932 award in pursuit of his project to develop technology that detects seismic faults and fractures using 3D imaging and other accompanying data processing systems at a favorable price point.

"When you inject one billion tonnes of carbon dioxide into the subsurface you can destabilize and stress the subsurface, causing earthquakes or possible leakage on the surface," said Zheng. "This project aims to measure the risk of injecting carbon dioxide more than 800 meters below ground level into permeable rock - at which point the gas turns to a supercritical fluid - using a nine-component surface seismic data set to image the crystalline basement and its overlying sedimentary cover and characterize small scale fractures and big faults in a cost-effective manner."

The U.S. Gulf Coast, where the bulk of the domestic energy industry is situated strategically near ports and feedstocks, possesses the potential to store up to 130 years of carbon based on the annual US emission rate of 5.1 billion metric tons per year using 2019 estimates, according the DOE. The US is a leading country in carbon capture and represents 80% of the world total capture capacity. However, the carbon capture capability now is only 25 million tonnes per year. In short, there is work to be done. The energy industry alone comprises nearly a quarter of U.S. emissions, per 2019 EPA data. Not surprisingly, a quick win is to sequester the carbon dioxide emissions near production sites along the Gulf Coast and store them.

But proper infrastructure to store carbon beneath the caprock layer in the earth and seal the greenhouse gas requires infrastructure build out based on an affordable but sustainable plan. First steps must incorporate risk management on where to store carbon. Zheng's proposed project would involve detecting faults beneath the subsurface, under which captured carbon is stored. This would improve the site selection of porous rocks to store carbon and reduce leakages and prevent injecting carbon dioxide in locations at risk for intense seismic activity.

Earthquake magnitude is determined by fault surface area and amount of slip - or relative motion of the rock separated by the fault. By imaging the fault and estimating the historic slip using machine learning, Zheng intends to estimate seismic activity in specific regions. In addition to the faults, by imaging small-scale fractures and their spatial distributions, an estimate of the fluid leakage pathways can be surmised.

Current 3D seismic reflection accumulates high costs for data acquisition, processing and human interpretation of large-scale subsurface faults. This prevents commercialization and creates a time intensive process with limited scope of detection. Imaging small-scale fractures is even more challenging. Other borehole techniques only quantify and locate subsurface migration of carbon fluid at one or a few locations by means of pressure and geochemical monitoring. Zheng's project utilizes a data set and technology that would provide a quick 3D scan to quantify seismic faults using novel machine learning methods to detect potential leaks and susceptivity to future seismic activity.

Historically, geophysics facilitates hydrocarbon production, but in this instance, it is a key toward a carbon net neutral future by providing a net negative carbon solution.

"Most think of applied geophysics as linked to the oil and gas industry," said Zheng. "While that is true, when we think of the energy transition and how to achieve our goals, it is important to realize that this cannot happen without studying the geophysics of the subsurface - in a way, it literally holds the well-being of humanity's future.


Related Links
University Of Houston
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
NASA Map Gives Most Accurate Space-Based View of LA's Carbon Dioxide
Pasadena CA (JPL) Jun 11, 2021
Using data from NASA's Orbiting Carbon Observatory 3 (OCO-3) instrument on the International Space Station, researchers have released one of the most accurate maps ever made from space of the human influence on carbon dioxide (CO2) in the Los Angeles metropolitan area. The map shows tiny variations in airborne CO2 from one mile of the giant L.A. Basin to the next. The highest CO2 readings, in yellow on the map, are on the west side of downtown L.A. - a densely populated area with congested freeway ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Sierra Space and Rhodium Scientific exploring viability of science operations on Sierra Space Life Habitat

Orchids in orbit: Seeds tested in space

Israel 'start-up nation' era may be ending: new figures

NASA's space communications user terminal

CARBON WORLDS
Turkey invites Russia to take part in construction of country's spaceport

Boost for UK space sector as new facility offers cheaper and greener rocket testing

Debris from carrier rocket drop safely

NASA, SpaceX Update Crew Launch and Return Dates

CARBON WORLDS
Mars rover to move south after testing

China reveals photos taken by Mars rover

Perseverance Rover Begins Its First Science Campaign on Mars

NASA's Mars helicopter Ingenuity flies for 7th time

CARBON WORLDS
Successful program ignited by modest spark of an idea

Astronauts board China's new space station for first time

Fresh group of astronauts readying for orbit

First astronauts arrive at China's space station

CARBON WORLDS
South Australia startups target international space opportunities

SES Renews Long-Term Relationship with Comcast Technology Solutions

Voyage 2050 sets sail: ESA chooses future science mission themes

MIT study compares the four largest internet meganetworks

CARBON WORLDS
Compact quantum computer for server centers

PROTEUS transitions to Marine Corps Warfighting Lab

Ultralight material withstands supersonic microparticle impacts

US Navy tests warship's metal with megablast

CARBON WORLDS
Some seafloor microbes can take the heat: And here's what they eat

SpaceML.org aims to accelerate AI application in space science and exploration

Liquid water on exomoons of free-floating planets

Star's death will play a mean pinball with rhythmic planets

CARBON WORLDS
Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.