Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Subaru Telescope Discovers the Most Distant Protocluster of Galaxies
by Staff Writers
Tokyo, Japan (SPX) May 09, 2012


A close-up of the central region of the protocluster. Objects circled in red are galaxies 12.7 billion light-years away. (Credit: NAOJ).

Using the Subaru Telescope, a team of astronomers led by Jun Toshikawa (The Graduate University for Advanced Studies, Japan), Dr. Nobunari Kashikawa (National Astronomical Observatory of Japan), and Dr. Kazuaki Ota (Kyoto University) has discovered the most distant protocluster of galaxies ever found--one that existed less than one billion years after the Big Bang.

Since protoclusters are ancestors of today's massive clusters of galaxies, this discovery of a protocluster in the early Universe advances our understanding of how large-scale structures form and how galaxies evolve.

The nearby or "local" universe, an area that extends about 380 million light-years away from Earth, contains many galaxy clusters, i.e., gravitationally bound groups of about 100 to more than 1000 galaxies.

These clusters are connected with each other and make up a huge network of galaxies called the "large-scale structure" of the Universe. Such configurations raise fundamental questions: When and how did these structures form in the history of the Universe?

Astronomers think that the Universe started out as an almost homogeneous mass that spread uniformly. Small fluctuations in the initial mass distribution increased by gravity over the 13.7 billion years of the Universe's age and produced the recent array of clusters.

Because clusters contain a larger number of old and massive galaxies than those found in isolated galaxies, astronomers speculate that developing clusters may significantly affect the evolution of their member galaxies.

Therefore, understanding the details of cluster formation (Note 1) is an essential step in addressing key issues of structure formation and galaxy evolution. A necessary part of this process is an investigation of all stages of cluster formation from beginning to end, which is why the current team gave particular emphasis to studying the birth of clusters.

The team focused on this phase of cluster formation by searching very distant galaxies that existed in the early Universe. Such observations present challenges for a couple of reasons. First, the light from more distant galaxies is faint and difficult to detect. Second, protoclusters in the early Universe are rare.

The use of the Subaru Telescope allowed the team to overcome these difficulties. The telescope not only has an 8.2 m primary mirror with large light-gathering power but also offers the advantage of the Subaru Prime Focus Camera (Suprime-Cam) with a wide-field imaging capability. These features are particularly beneficial for discovering faint and rare objects in the distant Universe.

The team chose to observe the Subaru Deep Field, a 0.25 square-degree-wide field in the northern sky near the constellation Coma Barenices.

The Subaru Deep Field is one of the most suitable regions for finding protoclusters in the early Universe; the area is not only deep and wide but has been intensively observed with the Subaru Telescope, which has detected very faint galaxies.

When the team searched for distant galaxies in the Subaru Deep Field and investigated their distribution, they found a region with a surface number density five times greater than the average (Fig. 1).

The astronomers then used Subaru's Faint Object Camera and Spectrograph (FOCAS) to conduct a spectroscopic observation, which confirmed that most of the galaxies located in the highly dense region lay in a narrow area in the line-of-sight. This concentration of galaxies could not be explained by chance.

On the basis of their observations with the Subaru Telescope, the team confirmed the existence of a protocluster 12.72 billion years ago (Fig. 2)--the most distant protocluster found with its distance established by spectroscopic observations (Note 2).

The astronomers were able to directly observe this cluster of galaxies at an early stage in galaxy evolution, when structures were beginning to form in the early Universe. This discovery will be an important step on the way to understanding structure formation and galaxy evolution.

Although the team also investigated the properties of the galaxies in the protocluster (Note 3), they did not find a significant difference between the protocluster galaxies and other galaxies in the field.

The astronomers speculate that the characteristic features of cluster galaxies in the nearby Universe occurred in later stages of cluster development, not during their birth (Note 4). Close examination of the internal structure of the protocluster showed that it could consist of subgroups of galaxies, merging together to form a more massive cluster (Note 5).

The team will continue their research with the Subaru Telescope's forthcoming Hyper-Suprime Camera (HSC), which has an imaging capability with a field of view seven times wider than Suprime-Cam.

The astronomers expect to use HSC to reveal how many protoclusters existed in the early Universe and to provide a better picture of protoclusters in general. Toshikawa summarized the team's intent: "By continually working to find such distant protoclusters, we can understand cluster formation more clearly."

These results were published in the May 1, 2012, edition of the Astrophysical Journal. This research was supported by The Japan Society for the Promotion of Science through Grant-in-Aid for Scientific Research 23340050.

.


Related Links
Subaru Telescope
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Science Nugget: Lightning Signature Could Help Reveal the Solar System's Origins
Greenbelt MD (SPX) May 09, 2012
Every second, lightning flashes some 50 times on Earth. Together these discharges coalesce and get stronger, creating electromagnetic waves circling around Earth, to create a beating pulse between the ground and the lower ionosphere, about 60 miles up in the atmosphere. This electromagnetic signature, known as Schumann Resonance, had only been observed from Earth's surface until, in 2011, ... read more


STELLAR CHEMISTRY
Perigee "Super Moon" On May 5-6

India's second moon mission Chandrayaan-2 to wait

European Google Lunar X Prize Teams Call For Science Payloads

Russia to Send Manned Mission to Moon by 2030

STELLAR CHEMISTRY
Russia could join U.S. in Mars mission

Antarctic stay to mimic Mars mission

Mars Rover Opportunity Hits Paydirt At Endeavour

Ancient Volcanic Blast Provides More Evidence of Water on Early Mars

STELLAR CHEMISTRY
Boeing Completes Full Landing Test of Crew Space Transportation Spacecraft

How will the US biotechnology industry benefit from new patent laws?

Space -- the next frontier for Hillary Clinton?

Company to Create 'Gas Stations' in Space

STELLAR CHEMISTRY
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

STELLAR CHEMISTRY
Dancing Droplets Rock Out On Space Station

Space Station's Robotic Crew Member Designed to Look, Move and Work Like a Human

Expedition 30 Lands in Kazakhstan

Three astronauts to land from ISS Friday

STELLAR CHEMISTRY
SpaceX boss admits sleep elusive before ISS launch

Air Force launches 2nd advanced satellite

A trio of Ariane 5 launchers are now at the Spaceport

United Launch Alliance Urges IAM Members to Vote in Favor of New Contract

STELLAR CHEMISTRY
NASA's Spitzer Sees the Light of Alien 'Super Earth'

Looking for Earths by looking for Jupiters

Some giant planets in other systems most likely to be alone

Four white dwarf stars caught in the act of consuming 'earth-like' exoplanets

STELLAR CHEMISTRY
Life-size, 3D hologram-like telepods may revolutionize videoconferencing

Fewer toxic toys and textiles in EU stores

Colors burst into contemporary architecture

Flying 3D eye-bots




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement