. 24/7 Space News .
TECH SPACE
Studying Hypervelocity Impact Phenomena
by Staff Writers
Herts, UK (SPX) Oct 27, 2015


File image: Thiot Ingenierie Shock Physics Laboratory.

Using a Specialised Imaging SIM8 ultra fast framing camera researchers at the Thiot Ingenierie Shock Physics Laboratory have been able study high velocity impacts of aluminium spheres against an aluminum target at velocities in excess of 4000 m/s.

Interest in hypervelocity has traditionally been driven by the military community but is increasingly of interest to the space / aerospace industry for areas of research such as enhancing the survivability of aircraft to in-flight explosions and in protecting valuable space satellites from damage from stellar debris.

To model a hypervelocity impact - Thiot Ingeniere undertook to accurately record a 3 mm ball with a velocity in excess of 4000m/s, just before, at and after impact. To allow the necessary accurate measurements of the projectiles just before impact it was determined that exposure times of 20 nanoseconds or less were required to reduce motion blur to less than the size of a pixel. Consequential to such short exposure times was also the problem of producing adequate light levels to fully define the edges and the corners of the projectile.

Data shown in Specialised Imaging Application Note 9 was produced by Thiot Ingeniere researchers using a SIM8 Ultra fast framing camera programmed for 200,000 frames per second with 20 ns exposures. The 3mm projectile was fired from a fixed 2-stage light gas gun. The event was backlit using a SI-AD500 flash lamp to provide adequate illumination for the complete event.

The high resolution images from the SIM8 clearly show the cloud of ejected material thrown backwards on impact and also demonstrates that even though the projectile disintegrates on impact, the fragments maintain the original projectile shape ahead of the main fragment cloud. The test also showed that the remaining fragments do not have enough energy to penetrate a second aluminum plate when two thin layers were used instead of one thicker layer.

Specialised Imaging SIM Series Ultra Fast Framing Cameras offer the ultimate in ultra-high-speed imaging performance to scientists and engineers across all disciplines. The all-new custom optical design offers up to 16 images without compromising shading, or parallax.

High resolution intensified CCD sensors controlled by state-of-the-art electronics provide almost infinite control over gain and exposure to allow researchers the flexibility to capture even the most difficult phenomena. Full remote control using Ethernet is offered as standard, either the integral viewfinder or a laptop computer can be used for local focus.

Comprehensive triggering facilities, highly accurate timing control, and a wide range of output signals, coupled with a custom software package that includes full measurement and image enhancement functions simplifies image capture.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Thiot Ingenierie Shock Physics Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Super-slick material makes steel better, stronger, cleaner
Boston MA (SPX) Oct 22, 2015
Steel is ubiquitous in our daily lives. We cook in stainless steel skillets, ride steel subway cars over steel rails to our offices in steel-framed building. Steel screws hold together broken bones, steel braces straighten crooked teeth, steel scalpels remove tumors. Most of the goods we consume are delivered by ships and trucks mostly built of steel. While various grades of steel have bee ... read more


TECH SPACE
Watch worn by US astronaut on Moon sells for $1.6 mn

Europe-Russia Lunar mission will make them friends again

Mound near lunar south pole formed by unique volcanic process

Lunar Pox

TECH SPACE
Landing site recommended for ExoMars 2018

You too can learn to farm on Mars

The Martian Astrobiologist

Opportunity parked for solar panels to charge up for winter

TECH SPACE
The Study of Science through Popular Movies

Reentry data will help improve prediction models

Hold on to your hoverboard: 'Back to the Future' is now

Journaling: Astronauts chronicle missions

TECH SPACE
The Last Tiangong

China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

TECH SPACE
RSC Energia patented inflatable space module for ISS

Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

TECH SPACE
Initial launcher assembly is completed for Arianespace's Vega mission with LISA Pathfinder

Ariane 5 is delivered for Arianespace's sixth heavy-lift mission of 2015

ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

TECH SPACE
Scientists Predict that Rocky Planets Formed from "Pebbles"

NASA's K2 Finds Dead Star Vaporizing a Mini 'Planet'

Cosmic 'Death Star' is destroying a planet

Most earth-like worlds have yet to be born, according to theoretical study

TECH SPACE
Super-slick material makes steel better, stronger, cleaner

NASA Takes Lasercom a Step Forward

Studying Hypervelocity Impact Phenomena

Space Junk Predicted to Enter Earth's Atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.