![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Morgan McAllister for ISS Science News Houston TX (SPX) Apr 26, 2018
What do astronauts, microbes, and plants all have in common? Each relies on deoxyribonucleic acid (DNA) - essentially a computer code for living things - to grow and thrive. Studying DNA in space could lead to a better understanding of microgravity's impact on living organisms and could also offer ways to identify unknown microbes in spacecraft, humans and the deep space locations we seek to visit. The microscopic size of DNA, however, can create some big challenges for studying it aboard the International Space Station. Most Earth-based molecular research equipment is large in size and requires significant amounts of power to run. Those are two characteristics that can be difficult to support aboard the orbiting laboratory, so previous research samples requiring DNA amplification and sequencing had to be stored in space until they could be sent back to Earth aboard a cargo spacecraft, adding to the time required to get results. However, all of that has changed in a few short years as NASA has worked to find new solutions for rapid in-flight molecular testing aboard the space station. "We need[ed] to get machines to be compact, portable, robust, and independent of much power generation to allow for more agile testing in space," NASA astronaut and molecular biologist Kate Rubins said in a 2016 downlink with the National Institutes of Health. The result? An advanced suite of tabletop and palm-sized tools including MinION, miniPCR, and Wet-Lab-2, and more tools and processes on the horizon. Space-based DNA testing took off in 2016 with the Biomolecule Sequencer. Comprised of the MinION sequencer and a Surface Pro 3 tablet for analysis, the tool was used to sequence DNA in space for the first time with Rubins at the helm. In 2017, that tool was used again for Genes in Space-3, as NASA astronaut Peggy Whitson collected and tested samples of microbial growth from around the station. Alongside MinION, astronauts also tested miniPCR, a thermal cycler used to perform the polymerase chain reaction that had been downsized to fit workbenches aboard the space station. Together these platforms provided the identification of unknown station microbes for the first time from space. This year, those testing capabilities translated into an even stronger portfolio of DNA-focused research for the orbiting laboratory's fast-paced science schedule. For example, miniPCR is being used to test weakened immune systems and DNA alterations as part of a student-designed investigation known as Genes in Space-5. The study hopes to reveal more about astronaut health and potential stress-related changes to DNA created by spaceflight. Additionally, WetLab-2 facility is a suite of tools aboard the station designed to process biological samples for real-time gene expression analysis. More tools for filling out the complete molecular studies opportunities on the orbiting laboratory are heading to space soon. "The mini revolution has begun," said Sarah Wallace, NASA's principal investigator for the upcoming Biomolecule Extraction and Sequencing Technology (BEST) investigation. "These are very small, efficient tools. We have a nicely equipped molecular lab on station and devices ideally sized for spaceflight." BEST will compare swab-to-sequencer testing of unknown microbes aboard the space station against current culture-based methods. "We see changes in gene expression in response to spaceflight for every living thing in which we have looked for it," said Wallace. "Studying those changes is critical to understand adaptations to spaceflight and also provides the potential to discover novel responses that could result in alternative healthcare treatments on Earth." While resupply and ground support are available for astronauts aboard the space station, missions beyond low-Earth orbit will require crews to rely on these new, space-saving technologies to track their health across time and to monitor potential health risks living alongside them. Fast, reliable sequencing and identification processes could keep explorers safer on missions into deep space. On Earth, these technologies may make genetic research more accessible, affordable and mobile.
![]() ![]() Mission to Mars? here's one hazard you haven't considered Washington DC (SPX) Apr 20, 2018 The hazards of space flight are well known: freezing temperatures, the vacuum of space, radiation, isolation. But there's a lesser-known risk getting the attention of researchers - a possible danger to vision. Retired NASA astronaut David Wolf, M.D., will provide insight into how space flight affects the eye on Thursday, April 19, when he gives the keynote address during a conference attended by many of the nation's leading eye physicians and surgeons, hosted by the American Academy of Ophthalmolo ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |