. | . |
Study unfolds a new class of mechanical devices by Staff Writers Provo, UT (SPX) Feb 14, 2019
It took just over 10 years, but real science has finally caught up to the science fiction of Iron Man's transforming exoskeleton suit. In a paper published in Science Robotics, engineers at Brigham Young University detail new technology that allows them to build complex mechanisms into the exterior of a structure without taking up any actual space below the surface. This new class of mechanisms, called "developable mechanisms," get their name from developable surfaces, or materials that can take on 3-D shapes from flat conformations without tearing or stretching, like a sheet of paper or metal. They reside in a curved surface (like, say, the arms of Iron Man's suit) and can transform or morph when deployed to serve unique functions. When not in use, they can fold back into the surface of the structure seamlessly. "These new discoveries make it possible to build complex machines that integrate with surfaces to be very compact, but can deploy and do complex tasks," said researcher Larry Howell, professor of mechanical engineering at BYU. "It opens up a whole new world of potential devices that have more functions, but are still very compact." Making hyper-compact mechanisms is something increasingly important as manufacturers across medical, space and military industries are constantly working to get more complex functionality in less space. Potential applications of developable mechanisms include: + Medical: Surgical instruments that can both cut materials and deploy lights simultaneously during minimally-invasive surgery + Vehicles and airplanes: Storage components that could deploy from the inner surface of the fuselage and be completely out of the way when not in use + Military: Quad-rotor drones that have adjustable wing spans for fitting in tight spaces + Space: Wheels that could deploy claws for rock crawling, which could be especially useful to an interplanetary rover. This new class of mechanical structures evolved from Howell and colleague Spencer Magleby's work on origami-based engineering, done in collaboration with origami artist Robert Lang. From solar arrays for NASA to bulletproof barriers for police officers, their work has generated national and international coverage. As the group of researchers moved to curved origami principles, the mathematics revealed a new way of doing more complex machines. "Origami was a stepping stone to this," Magleby said. "The art of Origami has inspired us to do things that don't even look like Origami, yet it is the core of much of this new engineering." The new line of research is sponsored by the National Science Foundation and includes researchers at BYU, the University of Southern Indiana and Lang Origami. "It's pretty cool to accomplish things that have merely been science fiction in the past," Howell said. "These are discoveries that will enable us to do things that no one has ever been able to do before. And we hope that other engineers, as they build on these discoveries, will apply them in ways that will help make the world a better place.
3D printed tires and shoes that self-repair Los Angeles CA (SPX) Feb 06, 2019 Instead of throwing away your broken boots or cracked toys, why not let them fix themselves? Researchers at the University of Southern California Viterbi School of Engineering have developed 3D-printed rubber materials that can do just that. Assistant Professor Qiming Wang works in the world of 3D printed materials, creating new functions for a variety of purposes, from flexible electronics to sound control. Now, working with Viterbi students Kunhao Yu, An Xin, and Haixu Du, and University of Conn ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |