. | . |
Study shows how permafrost releases methane in the warming Arctic by Staff Writers Moscow, Russia (SPX) Jun 11, 2021
Researchers from Skoltech have designed and conducted experiments measuring gas permeability under various conditions for ice-containing sediments mimicking permafrost. Their results can be useful both in modeling and testing techniques for gas production from Arctic reservoirs and in tracing methane emission in high latitudes. The paper was published in the journal Energy&Fuels. Permafrost, even though it sounds very stable and permanent, is actually quite diverse: depending on the composition of the frozen ground, pressure, temperature and so on, it can have varying properties, which are extremely important if you want to build something on permafrost, such as an oil and gas field. Permafrost is also very gassy: it may contain a lot of natural gas in the form of hydrates, and its permeability is an important parameter both for research and for many activities in the Arctic. "Gas permeability affects migration and accumulation of natural gas in this frozen ground as well as atmospheric emissions. Knowledge of filtration properties of permafrost containing gas hydrates is also absolutely necessary for estimates of the possibility of extracting gas from hydrates," Evgeny Chuvilin, Leading Research Scientist at Skoltech and a coauthor of the paper, says. Chuvilin and his colleagues decided to handle the poorly studied issue of gas permeability variations in ice- and hydrate-saturated sand samples during freezing and thawing and as gas hydrates form and dissociate. For that, the team had to design and build an experimental setup that would allow them to test various samples mimicking permafrost under various pressure and temperature conditions as well as clay content. "The data we got can be used in testing methods of gas extraction in permafrost areas, including from hydrates, and in mapping areas with high permeability in permafrost for methane emissions studies in the Arctic," Chuvilin says. Their study also showed a high probability of increasing permeability coupled with dissociation of gas hydrates in permafrost - a likely scenario given the current warming trend in the Arctic. "We don't necessarily have to wait for a complete thawing of permafrost - even a slight shift of temperature is enough to trigger dissociation. And increased gas permeability that will follow will create conditions for methane emissions into the atmosphere, causing a variety of environmental and technological impacts," Chuvilin notes.
Arctic sea ice thinning faster than expected, new study shows London (AFP) June 3, 2021 Sea ice in the Arctic's coastal regions may be thinning up to twice as fast as previously thought, according to a new study, with worrying implications for climate change. The analysis, led by researchers at Britain's University College London (UCL), concluded the ice in the coastal regions was thinning at a rate 70 to 100 percent faster than the established consensus. The dramatic reassessment comes after the team used more up-to-date maps of snow depth on the ice, which has been retreating for ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |