![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Bonn, Germany (SPX) Jul 04, 2018
Physicists at the University of Bonn have succeeded in putting a superconducting gas into an exotic state. Their experiments allow new insights into the properties of the Higgs particle, but also into fundamental characteristics of superconductors. The publication, which is already available online, will soon appear in the journal Nature Physics. For their experiments, scientists at the University of Bonn used a gas made of lithium atoms, which they cooled down significantly. At a certain temperature, the state of the gas changes abruptly: It becomes a superconductor that conducts a current without any resistance. Physicists also speak of a phase transition. A similar sudden change occurs with water when it freezes. The lithium gas changes to a more orderly state at its phase transition. This includes the formation of so-called Cooper pairs, which are combinations of two atoms that behave like a single particle to the outside.
Partner-dancing atoms "We illuminated the gas with microwave radiation," explains Prof. Dr. Michael Kohl from the Physics Institute at the University of Bonn. "This allowed us to create a state in which the pairs start to vibrate and the quality of the superconductivity therefore oscillated very quickly: One moment the gas was a good superconductor, the next a bad one." This common oscillation of the Cooper pairs corresponds to the Higgs boson discovered at the CERN Accelerator in 2013. As this state is very unstable, only a handful of working groups worldwide have succeeded in producing it. The experiments allow an insight into certain physical properties of the Higgs boson. For example, the physicists hope that studies like these will enable them to better understand the decay of this extremely short-lived particle in the medium term.
Fast-switchable superconductors They can be dissuaded by heating, but this is a very slow process. The experiments show that in principle this can also be over a thousand times faster. This insight may open up completely new applications for superconductors. The success of the Bonn scientists is also based on a successful cooperation between theory and experiment: "We theoretically predicted the phenomena," explains Prof. Dr. Corinna Kollath from the Helmholtz-Institut fur Strahlen- und Kernphysik at the University of Bonn. "During the experiments at the Physics Institute, Prof. Kohl and his colleagues knew exactly what to look for." A. Behrle, T. Harrison, J. Kombe, K. Gao, M. Link, J.-S. Bernier, C. Kollath and M. Kohl: Higgs mode in a strongly interacting fermionic superfluid; Nature Physics (2018); DOI: 10.1038/s41567-018-0128-6
![]() ![]() Study develops a model enhancing particle beam efficiency Sao Paulo, Brazil (SPX) Jun 22, 2018 The use of particle accelerators is not confined to basic research in high-energy physics. Large-scale accelerators and gigantic devices, such as the Large Hadron Collider (LHC), are used for this purpose, but relatively small accelerators are used in medicine (diagnostic imaging, cancer treatment), industry (food sterilization, cargo scanning, electronic engineering), and various types of investigation (oil prospecting, archeological surveying, analysis of artworks). Whatever the use, controlling ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |