. | . |
Study details chemical contribution of dwarf galaxy to Milky Way's growth by Brooks Hays Washington DC (UPI) May 01, 2019 Astronomers are gaining new insights into the way the Milky Way acquires new stellar citizens. Researchers at the National Astronomical Observatories of the Chinese Academy of Sciences have discovered a Milky Way star that accreted from a disrupted dwarf galaxy. Using observations by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope and the Subaru Telescope, astronomers were able to characterize the chemical composition of the alien star. Magnesium is the eighth most abundant chemical in the Milky Way, but it is present in only trace amounts inside the migratory star. What it lacks in magnesium, it makes up for with its surprisingly large reserves of europium, gold and uranium. "Stars preserve chemical information of their birth sites. We can distinguish stars formed in the Milky Way from stars formed in dwarf galaxies based on their chemical abundances," Zhao Gang, a professor at NAOC, said in a news release. Zhao and his colleagues estimate the star was acquired when its original home was disrupted in a collision with the Milky Way. The Milky Way is likely the product of many smaller galaxies that coalesced over time. Dozens of smaller galaxies continue to orbit the Milky Way. Previous studies suggests the Milky Way continues to swipe stars and gas from its diminutive neighbors. So far, the LAMOST spectroscopic survey telescope has captured more than 8 million stellar spectra for astronomers to analyze. "The massive spectra provided by the LAMOST survey give us a great opportunity to find chemically peculiar stars," said researcher Xing Qianfan. "This newly discovered star with large excesses of heavy elements provides a window for exploring the chemical evolution of disrupted dwarf galaxies. The star formation in dwarf galaxies is relatively slow comparing to larger galaxies, leading to chemical differences among their stellar populations." Researchers described their discovery of the stolen star this week in the journal Nature Astronomy. Astronomers expect the discovery and similar future discoveries to improve scientists' understanding of how the Milky Way evolved. "The discovery of this chemically peculiar star is a good start of chemical identification of stars accreted from dwarf galaxies. Such stars will be good tracers for exploring the assembly history of the Milky Way," said Zhao.
Astronomers take first, high-resolution look at huge star-forming region of Milky Way Ames IA (SPX) Apr 16, 2019 Astronomers from the United States and South Korea have made the first high-resolution, radio telescope observations of the molecular clouds within a massive star-forming region of the outer Milky Way. "This region is behind a nearby cloud of dust and gas," said Charles Kerton, an associate professor of physics and astronomy at Iowa State University and a member of the study team. "The cloud blocks the light and so we have to use infrared or radio observations to study it." The Milky Way region is ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |