24/7 Space News
STELLAR CHEMISTRY
Study could help solve mystery of the disappearing twins
An image of the binary stars Alpha Centauri A (left) and Alpha Centauri B, taken by the Hubble Space Telescope.
Study could help solve mystery of the disappearing twins
by Staff Writers
Los Angeles CA (SPX) May 12, 2023

When supermassive stars are born, they're almost always paired with a twin, and the two stars normally orbit one another.

But astronomers at UCLA's Galactic Center Group and the Keck Observatory have analyzed over a decade's worth of data about 16 young supermassive stars orbiting the supermassive black hole at the center of the Milky Way galaxy. Their findings, published in the Astrophysical Journal, reveal a startling conclusion: All of them are singletons.

But why? Are the stars, which are about 10 times larger than our sun, being formed alone in the hostile environment around the black hole? Have their "twins" been kicked out by the black hole? Or have pairs of stars merged to form single stars?

The findings support a scenario in which the central supermassive black hole drives nearby stellar binaries to merge or be disrupted, with one of the pair being ejected from the system.

The stars the scientists observed are known as S-stars, and most of them are young - formed within the past 6 million years - and massive. They are mostly located within a light-month, or a little under 500 billion miles, of the black hole.

"Stars this young shouldn't even be near the black hole in the first place," said UCLA postdoctoral scholar Devin Chu, the study's first author. "They couldn't have migrated to this region in just 6 million years. But to have a star form in such a hostile environment is surprising."

Chu and his colleagues used data taken with Keck's adaptive optics instruments to conduct the first-ever search for spectroscopic binary stars among the S-stars. Spectroscopic binary stars appear through optical telescopes to be single stars but, when the light they emit is analyzed by scientists, are revealed to actually be pairs of stars.

All of the S-stars that appeared to be single were, in fact, alone.

Even more surprising, the researchers found that the number of pairs of S-stars that could possibly exist near the black hole was much lower than the number of comparable stars in the section of space surrounding Earth's sun, known as the solar neighborhood.

They did this by calculating a metric called the binary fraction, which defines how many stars in a given area could come in pairs; the higher the binary fraction, the more stars that could exist in pairs. Previous studies have shown that the binary fraction for stars similar to S-stars in Earth's solar neighborhood is around 70%. In the new study, the researchers found that near the Milky Way's black hole, the upper limit is just 47% -suggesting that the extreme environment of the black hole is limiting the survival of stellar binaries.

"This difference speaks to the incredibly interesting environment of the center of our galaxy; we're not dealing with a normal environment here," Chu said. "This also suggests that the black hole drives these nearby binary stars to merge or be disrupted, which has important implications for the production of gravitational waves and hypervelocity stars ejected from the galactic center."

The UCLA researchers now plan to explore how the limit on the binary fraction they calculated compares to the binary fraction for similar stars that are located farther from the black hole, but still within its gravitational influence.

Research Report:Evidence of a Decreased Binary Fraction for Massive Stars within 20 milliparsecs of the Supermassive Black Hole at the Galactic Center

Related Links
University of California - Los Angeles
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Celestial monsters at the origin of globular clusters
Geneva, Switzerland (SPX) May 12, 2023
Globular clusters are the most massive and oldest star clusters in the Universe. They can contain up to 1 million of them. The chemical composition of these stars, born at the same time, shows anomalies that are not found in any other population of stars. Explaining this specificity is one of the great challenges of astronomy. After having imagined that supermassive stars could be at the origin, a team from the Universities of Geneva and Barcelona, and the Institut d'Astrophysique de Paris (CNRS a ... read more

STELLAR CHEMISTRY
Cosmonauts wrap up 5-hour ISS spacewalk

Axiom Space's second crewed mission gets green light

Ax-2 crew carrying personal, cultural mementoes on launch to ISS

Research announcement for technology development leveraging ISS is open for concepts

STELLAR CHEMISTRY
Virgin Orbit receives more than 30 indications of interest under court approved bid procedures

Wenchang Spacecraft Launch Site can launch new-generation rockets

For 191st time, SpaceX booster successfully returns after launch

Momentus signs launch package with SpaceX

STELLAR CHEMISTRY
These sounds are out of this world

Another beautiful hole on Mars: Sols 3825-3826

Perseverance images may show record of wild Martian river

OU space scientists provide new insight into the evolution of Mars' atmosphere

STELLAR CHEMISTRY
"Tianzhou Express" is online again, with five highlights

Tianzhou 6 docks with Tiangong space station

China's cargo craft Tianzhou 6 ready for launch

Tianzhou-5 cargo craft separates from China's space station

STELLAR CHEMISTRY
What if all telecommunication satellites stopped?

Toshiba posts 35% decline in full-year net profit

Sidus Space selected by OneWeb to manufacture satellite hardware

Sidus Space expands global ground site network with new ATLAS contract

STELLAR CHEMISTRY
Arianespace to launch the first active debris removal ClearSpace mission with Vega C

Juice's RIME antenna breaks free

New deal inked to space test meta-optical surfaces

Space Forge enables reusable satellites with new way of returning from space to Earth

STELLAR CHEMISTRY
Astronomers observe the first radiation belt seen outside of our solar system

Astronomers spot benzene in planet-forming disk around star for first time

Researchers uncover how primordial proteins formed on prebiotic earth

Bacteria survive on radioactive elements

STELLAR CHEMISTRY
Pioneer 11, launched 50 years ago, helped solve mysteries of the universe

NASA's Juno mission closing in on Io

NASA: Up to 4 of Uranus' moons could have water

New video series captures team working on NASA's Europa Clipper

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.