. | . |
Study: Microbes could influence Earth's geological processes as much as volcanoes by Staff Writers Knoxville TN (SPX) Apr 29, 2019
By acting as gatekeepers, microbes can affect geological processes that move carbon from the earth's surface into its deep interior, according to a study published in Nature and coauthored by microbiologists at the University of Tennessee, Knoxville. The research is part of the Deep Carbon Observatory's Biology Meets Subduction project. "We usually think of geology as something that happens independently of life, and life just adjusts to the geology," said Karen Lloyd, associate professor of microbiology at the University of Tennessee, Knoxville and senior author of the study. "But we found that microbes can impact major geological processes happening on Earth today." For the study, researchers evaluated the Costa Rica's subduction zone, a point where the ocean floor sinks underneath the continental plate. The results showed that microbes consume and trap a small but measurable amount of the carbon sinking into the trench off Costa Rica's Pacific coast. The microbes may also be involved in chemical processes that pull out even more carbon, leaving cement-like veins of calcite in the crust. "It is amazing to consider that tiny microbes can potentially influence geological processes on similar scales as these powerful and visually impressive volcanoes, which are direct conduits to the earth's interior," said Maarten de Moor, coauthor and professor at the National University of Costa Rica's Observatory of Volcanology and Seismology. The unexpected findings have important implications for how much carbon moves from Earth's surface into the interior, especially over geological timescales. The research is part of the Deep Carbon Observatory's Biology Meets Subduction project. In the future, researchers plan to investigate other forearc regions to see if this trend is widespread. If these biological and geochemical processes occur worldwide, they would translate to 19 percent less carbon entering the deep mantle than previously estimated.
Dinosaur-era crab fossil reveals new branch in the tree of life Washington DC (UPI) Apr 25, 2019 Researchers have discovered an unusual new crab species, Callichimaera perplexa, in both Columbia and Wyoming. The dinosaur-era crab, which lived between 90 and 95 million years ago, is unlike a modern crab. According to scientists with the Smithsonian Tropical Research Institute in Panama, the species and its unique morphology revealed an entirely new branch of the tree of life. "This new discovery is one of the most exciting fossil findings in the tropics in the past decade," Javier Lu ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |