. | . |
Strengthening Our Space Technology Future: Snapshots of Success by Staff Writers Greenbelt MD (SPX) Jan 10, 2016
NASA's Space Technology Mission Directorate (STMD) checked off a number of key accomplishments in 2015. These advancements pushed the technological envelope, not only for use near Earth, but also to support future deep-space exploration missions. "In 2015 we have made significant progress with several of our larger technology demonstration initiatives," explains Steve Jurczyk, NASA associate administrator for STMD. One of STMD's goals is to shorten the cycle of time needed to research and develop new space technologies and capabilities for flight demonstration. At the same time, the space agency's mastery of new technologies enables high-payoff endeavors that strengthen aerospace activities in government, academia and industry. In sum, that helps keep America competitive as well as on the cutting-edge within the global space community. The pace of progress is due in large measure to the STMD-managed nine major technology development programs carried out at each of NASA's 10 field centers across the United States. Currently, STMD partners with 42 other government agencies on 61 programs and projects, and sponsors four projects with five international organizations.
Engaged and active Throughout 2015, STMD was engaged and active in eight central areas: + High Performance In-Space Propulsion; + High Bandwidth Space Optical Communications; + Advanced Life Support and Resource Utilization; + Entry, Descent, and Landing (EDL) Systems; + Space Robotic Systems; + Lightweight Space Structures; + Deep Space Navigation; + Space Observatory Systems. Within these target areas there were a number of notable achievements in fiscal year 2015. Here are a few select STMD snapshots of success.
Slamming on the brakes The balloon-enabled mission evaluated two key technologies for landing robotic and support systems for scientific and human exploration missions on the Red Planet: a Supersonic Inflatable Aerodynamic Decelerator (SIAD), a large doughnut-shaped air brake eyed as a technology to land large payloads on Mars and other destinations that have an atmosphere, and a supersonic ringsail parachute. That latest test followed up from a June 2014 flight and both missions validated a SIAD. The back-to-back LDSD flights also assessed a state-of-the-art supersonic parachute. It's the largest parachute ever flown at 100 feet in diameter. Jurczyk notes that both LDSD flights provided important lessons learned given the inability of the high-tech parachute to maintain its structural integrity. "That's what we're about. We're pushing technology and some things are going to work as we intended and some things are not," Jurczyk points out. The LDSD team is now fully engaged in deciphering the physics behind supersonic parachute deployments, "a physically complex problem," he adds.
Going green GPIM is designed to test the distinctive quality of a high-performance, non-toxic, "green" fuel on orbit. STMD worked with Aerojet Rocketdyne in Redmond, Washington and GPIM prime contractor Ball Aerospace and Technologies Corp. in Boulder, Colorado to develop a spacecraft with a distinctive propellant. That "green" propellant is a hydroxyl ammonium nitrate-based fuel/oxidizer mix, also known as AF-M315E. GPIM will flight demonstrate this fuel designed to replace use of highly toxic hydrazine and complex bi-propellant systems now in common use today. Doing so means enhancing a spacecraft's performance and "volumetric efficiency" - more oomph for the ounce.
Robotics - a helping hand for humans At the heart of this research is tapping the strength of robotics to augment human productivity. That translates to lowering mission risk by melding "best of" attributes of humans and robots. For instance, work is ongoing to fabricate a prototype rover in support of a NASA Human Exploration and Operations Mission Directorate effort, the Resource Prospector project. This Moon-bound mission may fly in 2020. It will demonstrate lunar prospecting skills to identify the location and composition of "volatiles"-perhaps large reservoirs of water-ice that may be buried below the Moon's surface. Jurczyk said that STMD's effort in this area could lead to a "gas station" on the Moon. "Extracting water on the lunar surface could allow producing quantities of hydrogen and oxygen for rocket fuel. So we're looking at that prospect too," he adds. STMD manages NASA's Centennial Challenges program. In 2015, the space agency awarded $100,000 in prize money to the Mountaineers, a team from West Virginia University, Morgantown. They took part in the Sample Return Robot Challenge, successfully showcasing how robots can locate and collect geologic samples from wide and varied terrains, operating without human control.
Next generation tool In terms of technology, this project pushes the reset button on precision navigation in space. DSAC is headed for a test flight in September 2016. DSAC team members wrapped up clock integration as well as clock functional, performance, vibration and thermal vacuum testing before its delivery to payload integration and testing in July 2015. Those tests have aided in a step-by-step maturing of the DSAC's design, composed of a small, ultra-precise, mercury-ion atomic clock, and have helped to greenlight its delivery as a host payload for liftoff in 2016. DSAC will be onboard a Surrey Satellite Technology U.S. spacecraft as part of the U.S. Air Force's Space Test Program (STP-2) mission to launch into Earth's orbit atop a Space X Falcon 9 Heavy booster. Once DSAC is on orbit, this next-generation tool will be put through its paces for spacecraft navigation and radio science, as well as its application to global positioning systems. DSAC technology can improve navigation of spacecraft to distant destinations and enable collection of more data with better precision. In fact, DSAC offers the promise of being 50 times more accurate than today's best navigation clocks. "The Deep Space Atomic Clock can provide higher precision navigation for our next generation Global Positioning Satellite constellation," Jurczyk observes. "It could potentially also enable gravity mapping of one of Jupiter's most puzzling moons, Europa."
Nonstop thrust This SEP technology makes feasible more affordable missions for commercial and government operations in Earth orbit and beyond, Jurczyk adds.
What makes SEP so important? Early SEP progress was spearheaded by ATK Aerospace and Deployable Space Systems. Working with NASA, the companies completed ground testing of large, high-power solar arrays that can be folded into small, lightweight packages for rocket launch. In fiscal year 2015, a SEP team successfully tested a new 12.5-kilowatt Hall thruster that employs magnetic shielding making it capable of operating continuously for years-a capacity important to supporting deep space exploration missions. "We're very proud of this STMD technology infusion story in regards to SEP," Jurczyk advises.
Focus on the future In particular, planning is jelling on a 2019 in-space demonstration of high-performance, high-bandwidth laser communications from deep space to Earth. "It's important not only for NASA and other government agency partners, but also for the commercial satellite operators," Jurczyk said. In moving forward into the next year, "I am committed to the view that the more you fly, the faster you learn," Jurczyk explains. That passion is bolstered by NASA's recently announced partnerships with nearly two dozen U.S. companies under the "Utilizing Public-Private Partnerships to Advance Tipping Point Technologies" and the "Utilizing Public-Private Partnerships to Advance Emerging Space Technology System Capabilities" solicitations. The objective of these partnerships is to advance the agency's goals for robotic and human exploration of the solar system by guiding the development of critical space technologies. From robotic in-space manufacturing, pushing forward on small spacecraft propulsion systems to diminutive and less power-hungry instruments for remote sensing applications, Jurczyk said, "we're looking forward to moving those contracts and Space Act Agreements into place and developing some fascinating technologies."
Related Links Technology at NASA Space Tourism, Space Transport and Space Exploration News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |