. 24/7 Space News .
STELLAR CHEMISTRY
Strainoptronics: A new way to control photons
by Staff Writers
Washington DC (SPX) Jun 23, 2020

Artistic representation of a strain engineered 2D photodetector on silicon photonic circuit.

Researchers discovered a new way to engineer optoelectronic devices by stretching a two-dimensional material on top of a silicon photonic platform. Using this method, coined strainoptronics by a team led by George Washington University professor Volker Sorger, the researchers demonstrated for the first time that a 2D material wrapped around a nanoscale silicon photonic waveguide creates a novel photodetector that can operate with high efficiency at the technology-critical wavelength of 1550 nanometers.

Such new photodetection can advance future communications and computer systems, especially in emerging areas such as machine learning and artificial neural networks.

The ever-increasing data demand of modern societies requires a more efficient conversion of data signals in the optical domain, from fiber optic internet to electronic devices, like a smartphone or laptop. This conversion process from optical to electrical signals is performed by a photodetector, a critical building block in optical networks.

2D materials have scientific and technologically relevant properties for photodetectors. Because of their strong optical absorption, designing a 2D material-based photodetector would enable an improved photo-conversion, and hence more efficient data transmission and telecommunications. However, 2D semiconducting materials, such as those from the family of transition metal dichalcogenides, have, so far, been unable to operate efficiently at telecommunication wavelengths because of their large optical bandgap and low absorption.

The Solution
Strainoptronics provides a solution to this shortcoming and adds an engineering tool for researchers to modify the electrical and optical properties of 2D materials, and thus the pioneered 2D material-based photodetectors.

Realizing the potential of strainoptronics, the researchers stretched an ultrathin layer of molybdenum telluride, a 2D material semiconductor, on top of a silicon photonic waveguide to assemble a novel photodetector. They then used their newly created strainoptronics "control knob" to alter its physical properties to shrink the electronic bandgap, allowing the device to operate at near infrared wavelengths, namely at the telecommunication (C-band) relevant wavelength around 1550 nm.

The researchers noted one interesting aspect of their discovery: the amount of strain these semiconductor 2D materials can bear is significantly higher when compared to bulk materials for a given amount of strain. They also note these novel 2D material-based photodetectors are 1,000 times more sensitive compared to other photodetectors using graphene. Photodetectors capable of such extreme sensitivity are useful not only for data communication applications but also for medical sensing and possibly even quantum information systems.

From The Researchers
"We not only found a new way to engineer a photodetector, but also discovered a novel design methodology for optoelectronic devices, which we termed 'strainoptronics.' These devices bear unique properties for optical data communication and for emerging photonic artificial neural networks used in machine learning and AI," said Volker Sorger, associate professor of electrical and computer engineering at GW

"Interestingly, unlike bulk materials, two-dimensional materials are particularly promising candidates for strain engineering because they can withstand larger amounts of strain before rupture. In the near future, we want to apply strain dynamically to many other two-dimensional materials in the hopes of finding endless possibilities to optimize photonic devices," added Sorger.

Research Report: "Strain-Engineered High Responsivity MoTe2 Photodetector for Silicon Photonic Integrated Circuits"


Related Links
George Washington University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Applying 'magic angle' twistronics to manipulate the flow of light
Sydney, Australia (SPX) Jun 15, 2020
Monash researchers are part of an international collaboration applying 'twistronics' concepts (the science of layering and twisting 2D materials to control their electrical properties) to manipulate the flow of light in extreme ways. The findings, published in the journal Nature, hold the promise for leapfrog advances in a variety of light-driven technologies, including nano-imaging devices; high-speed, low-energy optical computers; and biosensors. This is the first application of Moire phys ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
More Hands Make Light Work: Crew Dragon Duo Increases Science Tempo on Space Station

KBR wins $570M NASA contract for human spaceflight operations at Marshall

First space tourists will face big risks, as private companies gear up for paid suborbital flights

Kathy Lueders Selected to Lead NASA's Human Spaceflight Office

STELLAR CHEMISTRY
Rocket Lab launches Boston University's magnetosphere experiment

Putin: Russia is building defenses against hypersonic missiles

Arianespace Vega mission to perform Small Spacecraft Mission Service Proof of Concept flight

New Zealand rocket launch postponed due to wind gusts

STELLAR CHEMISTRY
Martian rover motors ahead

Airbus wins next study contract for Martian Sample Fetch Rover

Electrically charged dust storms drive Martian chlorine cycle

ExoMars spots unique green glow at the Red Planet

STELLAR CHEMISTRY
Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

More details of China's space station unveiled

STELLAR CHEMISTRY
Maxar to Build Four 1300-class Geostationary Communications Satellites for Intelsat

SpaceX launches 58 Starlink, 3 SkySat satellites from Florida

SpaceX, Amazon, OneWeb seek communications dominance in space

York Space Systems and LatConnect 60 to deploy a small satellite constellation

STELLAR CHEMISTRY
Graphene smart textiles developed for heat adaptive clothing

Quantum rings in the hold of laser light

Hughes Joins with 4-H to Champion Online STEM Education amid Increased Demand for Virtual Learning

The many lifetimes of plastics

STELLAR CHEMISTRY
As many as six billion Earth-like planets in our galaxy, according to new estimates

Research sheds new light on intelligent life existing across the galaxy

Astronomers discover how long-lived Peter Pan discs evolve

Plant pathogens can adapt to a variety of climates, hosts

STELLAR CHEMISTRY
Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.